Definitely
Indefinitely
Infinite
Other Things
200

int_{1}^{e}\frac{x^2+1}{x}dx

\frac{e^2+1}{2}

200

intsin^-1(x)dx

xarcsinx+sqrt(1-x^2)+C

200

\lim_(x\rightarrow0)\frac{sinx-x}{x^3}

-1/6

200

What is the average rate of change of  f(x)=secx on the interval  [0, pi/3] ?

 (3)/(pi) 

240

 For differentiable function f, int_{-3}^{4}f(x)dx=100 and the average value of f(x) on [-5, -3] is 6. Determine  int_{4}^{-5}f(x)dx 

-112

240

\int\frac{5x+14}{x^2+8x-20}dx

2ln|x-2|+3ln|x+10|+C

240

\lim_(x\rightarrow\infty)(1-3/x)^(x)=

1/e^3

240

What is the average value of  f(x)=tanx  on the interval   [0, pi/3]

 (3ln2)/pi 

270

\int_{0}^{2}\frac{3x^3+7x^2-x+7}{x^2+1}dx

20-2ln5

270

int\frac{4x+3}{x^2+10x+26}dx

2ln|x^2+10x+26|-17arctan(x+5)+C

270

\int_{1}^{\infty}e^-xdx=

1/e

270

The velocity of a flying flamingo (rectilinear motion) is given by  v(t)=t^2-6t+8 m/s . Determine the total distance the flamingo traveled from t=1 to t=5. 

4 m

300

int_{sqrt2}^{sqrt5}30x^3sqrt(x^2-1) dx=

256

300

inte^xcosxdx

\frac{e^xsinx+e^xcosx}{2}+C

300

Use the integral test to show that  \sum_{n=1}^{\infty}5/n^3 is convergent.

Since  \lim_{a\rightarrow\infty}\int_{1}^{\a}5/x^3dx=\frac{5}{2} , the series is convergent by the integral test.

300

Given  g(x)=\int_{0}^{sinx}arcsin(t)dt , determine  g'((5pi)/6) .

-(pisqrt3)/12

M
e
n
u