Properties of Parabolas
Solve by Factoring
Solve by Taking Square Roots
Solve by Completing the Square or Quadratic Formula
Using the Discriminant
100

Vertex, axis of symmetry and min/max value of:

y=-x2

Vertex: (0,0)

Axis of Symmetry: x=0

Maximum: 0

100

Solutions of:

x2+2x-3=0

(-3,1)

100

n2-8=31

Plus or minus the square root of 39.

100

x2+12x+11=0

x=-1 or -11

100

Find the value of the discriminant:

6p2-2p-3=0

76

200

Vertex, axis of symmetry, and min/max value of:

2x2

Vertex: (0,0)

Axis of Symmetry: x=0

Minimum: 0

200

n2-2n-3=-4

n=1

200

2r2=104

Plus or minus 2 times the square root of 13.

200

n2+12n-28=0

x=2 or -14

200

Find the value of the discriminant:

-4m2-4m+5=0

96

300

Vertex, axis of symmetry, and min/max value of:

y=(-3/4)x2+9x-31

Vertex: (6,-4)

Axis of Symmetry: x=6

Max: -4

300

5r2=-80+50r

x=8,2

300

5b2+5=-25

Plus or minus i times the square root of 6

300

r2+2r-77=3

r=8 or -10

300

Find the value of the discriminant and then state the number of real or irrational solutions:

9n2-3n-8=-10

-63; two imaginary solutions

400

Vertex, axis of symmetry, and min/max value of:

y=(1/2)x2+5x+37

Vertex: (-5,6)

Axis of Symmetry: x=-5

Min: 6

400

p2=5p+14

x=-2,7

400

2r2+7=97

Plus or minus 3 times the square root of 5

400

x2-6x-67=5

x=12 or -6

400

Find the value of the discriminant and then state the number of real or imaginary solutions:

9m2+6m+6=5

0; one real solution

500

Vertex, axis of symmetry, and min/max value of:

y=6x2-36x+45

Vertex: (3,-9)

Axis of Symmetry: x=3

Min: -9

500

30m2-35m=25

x=(5/3),-(1/2)

500

36m2+10=206

Plus or minus (7/3)

500

-25+3x=-3x2-7

x=2 or -3

500

Find the value of the discriminant and then state the number of real or imaginary solutions:

-9b2=-8b+8

-224; two imaginary solutions

M
e
n
u