f(x) = 9x+5
f(5)=
f = 50
f(x)= x2 + 2x - 32
f(6)=
-8
g(x)= x2+6x-16
g(3)=
11
f(x)= 4x+3
g(x)= x-3
(f-g)(x) =
(f-g)(x) = 3x+6
f(x) = x2+8x+4
f(x+1) =
x2+10+4
f(x) = x3-1
f(12)=
f(-8) =
f(12)= 35
f(-8) = -513
Find the Function for H(x) =(6x-9)2 Find functions for f and g such that (f º g) (x) = H (x)
f(x) = x2
g(x) = 6x-9
Decompose the function into (f o g)
h(x)= 7x3-1
f(x)= x-1
g(x) = 7x3
f(x)= 4x+3
g(x)= x-3
(f*g)(x)=
(f*g)(x)= 4x2 - 9x - 9
r(x) = -3x-1
t(x) = -x2-1
t(r(-2))=
-26
f(x) = x2+8x+5
g(x) = 3/x2-2
f(x-2)=
g(-1/x) =
f(x-2)= x2+4x-7
g(-1/x) = 3x2/ 1-2x2
The function f is defined as follows
f(x) = x2 - 3x + 19
Find f(-20) and f(65)
f(-20)= 479
f(145)= 4049
r(x)= -2x-1
s(x) = -x2+1
s(r(-4))=
-48
g(x) = x2 -6
(g o g)(x) =
x4 -12x2 + 30
g(x)= x2+4x-8
g(4)=
24
Finde all the values that are not in the domain of f/g(-3)
g(x)= x+2
f(x) = (x-4)(x+5)
4, -5
f(x) = -5 + 2x2
g(x) = 3-7x
Find (f/g)(-4)
Find all the values that are NOT in the domain of (f/g)(-4)
(f/g)(-4) = 27/31
Values that are NOT in the domain of (f/g) 3/7
s(x)= x+6
f(x)= 3x2
(s*t)(x)=
3x3+18x2
f(x) = x+6/x-3
g(x) = 2x+7
(f o g) (x) =
2x+13/2x+4
H(x) = 4x2+36
f(x) = x+36
g(x)=4x2
r(x)= -5x-2
s(x)= -3x+4
s(r(2))=
s(r(2))= 40
s(x) = -x + 2
t(x) = x2 + 2
Find the value of t(s(-2))
t(s(-2))= 18
f(x)= x2+4x+8
f(x-3) =
x2-2x+5
f(x) = x+6/x-3
g(x) = 2x+7
(f o g) (x) = 2x+13/2x+4
Domain of f o g:
( - infinite, -2) U (-2, infinite)
H(x) = 10x3-38
f(x) = x-38
g(x) = 10x3