Parent functions
Logs and Exponentials
Simplifying trig
Matrices
Polar/parametric functions
200

y = 4

horizontal line at y = 4.
200

e0 + e1

e + 1

200

sin(x)sec(x)

tan(x)

200

What are the dimensions of the following matrix?

3  4  6

8  2  1

2x3

200

Eliminate the parameter to write the rectangular equation represented by the following:

x = t

y = 4t

y = 4x

400

y = x2

concave up parabola

400

ln(0)

Does not exist

400

3(sin(x) + cos(x))2 - 6sin(x)cos(x)

3

400

3  2      +      3  -2

4  -2             2  -1

6  0

6  -3

400

Eliminate the parameter to write the rectangular equation represented by the following:

x = 4cos(t)

y = 2sin(t)

x2/16 + y2/4 = 1

600

y = |x| / x

y = -1 if x < 0

y = 1 if x > 0

600

Solve.

ln(50) - ln(5) + ln(2) = ln(x)

20

600

tan(-x)cos(x)

-sin(x)

600

4  -1    *    2  -1

2  -3          0  6

8  -10

4  -20

600

Convert from polar coordinates to rectangular coordinates.

(-2, 7π/6)

((sqrt(3)), 1)

800

y = ex

y --> 0 as x --> -inf

y --> inf as x --> inf

contains the point (0, 1)

800
Solve.

ln(x+5) = ln(x - 1) - ln(x - 1)

No solution

800

sin(x)tan(x) + cos(x)

sec(x)

800

Use your calculator to solve.

3x + 2y - 3z = 4

4x - 3y + 2z = 0

-3x + y - 4z = -5

x = 1

y = 2

z = 1

800

Convert the equation to rectangular coordinates.

r = 4sin(θ)

x2 + y2 - 4y = 0

1000

y = ln(x)

y --> -inf as x --> 0-

y --> inf as x --> inf

contains the point (1, 0)

1000

Solve.

2x2e2x + 2xe2x = 0

x = -1, 0

1000

(1 - sin2(x)) / (csc2(x) - 1)

sin2(x)

1000

The following message was encoded with a 2x2 matrix. The last four letters are POND.

1  4  -16  35  7  28  -12  51  3  100  -18  27  14  56  1  4  -7  115  -23  40  12  48  -14  109  6  68

A BIG FISH IN A SMALL POND

1000

Convert the equation to polar coordinates and give an equation solved for r:

3x - y + 2 = 0

r = -2 / (3cos(θ) - sin(θ))

M
e
n
u