Trig Graphing
Trig Equations
Trig Laws
100

When graphing a trig function, the equation includes a a b h and k. In the equation y = 2sin(pi/2(x+1)+3, label each part and describe how it changes the equation. 

a = 2 = amplitude

b = pi/2 = period

h = +1 = horizontal shift

k = +3 = vertical shift

100

cos(x)=1/3

Answer in radians

X= 1.231, 5.052

100

(look at paper)

Solve for θ in the given triangle

Angle A: ?

Angle B: 20 deg

Angle C: 126 deg


Angle A = 34 deg

200

Graph y = 4csc(x)+1

(see paper)

200

2sec(x)=-5

answer in radians

x= 1.982, 4.301

200

(look at paper)

Solve for side a in the given triangle 

Angle A: 58 deg

Angle B: 71 deg

Angle C: 56 deg

Side AC: 19

side a = 16.05

300

Graph y = 6cot(1/2(x+pi))+2

(see paper)

300

5sin(1/2(x-pi))+3=0

x= 1.855, 10.712

300

(look at paper)

Solve for θ in the given triangle

Side AC: 38 

Side AB: 44

Angle A: 30 deg

Angle B: ?

Angle B = 59.73 deg

400

Find equation from graph

y = 2tan(x)-1

400

-1/2cot(pi/6(x-1))+4=0

x= 1.238, 7.238

400

(look at paper)

Fully solve for the two possible triangles using the given information

Angle A: 25 deg

Side AC: 10

Side CB: 5

AB:?

Angle C?

Angle B:?

Triangle 1: 

AB=11.74

Angle C=97.3 deg

Angle B=57.70 deg

Triangle 2:

AB=6.39

Angle C= 32.70 deg

Angle B=122.30 deg

500

Find equation and graph:

A ferris wheel:

total height: 586 m

wheel diameter : 446 m

one full revolution: 32 min

Then find height at 12 min

y = -223cos(pi/16(x)+363

height at 12 min: 537.21

500

1/4csc(pi/3(x+2))-1=0

Find 4 solutions

x= -1.759, 4.241

     0.759, 6.759

+/- 6

500

(look at paper)

Find:

Angle ADC and side AC

Angle BDC and side DB 

Given: 

Angle DAC: 33 deg

Angle ACD: 78 deg

Angle ABC: 141 deg

Side AB: 102

Side BC: 76



AC=168.014

Angle ADC=91.46 deg

DB=106.13

Angle BDC=44.46 deg

M
e
n
u