Love Triangles
Work Those Quads
Similar, but Not the Same
Face Full of Trigonometry
Circles & Stuff
100


1) XY

2) WY

3) WX

100

Find the value of x.


180(5-2) = 540

(5x+2)+(3x+5)+(8x+8)+(4x+15)+(5x+10) = 540

25x+40 = 540

x=20

100

Find the length of CD 

if quad ABCD ~ RSTU.


(y+2)/12 = 5/6

6(y+2)=(12)(5)

y+2=10

y=8

CD=y+2=8+2=10

100


adjacent                           hypotenuse

                                opposite

b = 14.4065                         c = 21.5301

100

Find the values of x and y.


2y+1=y+4

y=3

5x-18=3x-4

2x=14

x=7

200

List the angles from smallest to largest.

m∠S, m∠T, m∠R

200

This is a rhombus. Find LO.


MN cong LO

LM cong MN

2x-9=x+5

x=14

LO = 14+5 = 19

200

The 2 triangles are similar.

What is the length of CD?

(HINT: What theorem will help you

 find AB?)


6^2+AB^2=10^2

AB^2=100-36

AB=8

AC/CD = AB/ED

6/CD = 8/12

8(CD) = 72

CD=9

200

What is 

theta?



ፀ = 22.6199°

200

What is the arch length of AB if x = 48 degrees and r = 18? (Leave pi in answer.)

24/5 pi

300

What is a segment  that divides an angle in half to make 2 congruent angles?

Angle bisector

300

Solve for 

angleSPQ



angleSPQ cong angleSRQ

(6z-5)+(2z+25)=180

8z=160

z=20

angleSPQ=2(20)+25=65

300

What kind of triangle does the statement determine?

a2  + b2  < c2      


What theorem says this it true?

__________________________________

__________________________________

Obtuse triangle, according to the Pythagorean Inequality Theorem

300

Solve the triangle.

                                    45 degrees

leg = 7

hypotenuse = 7sqrt2 

300

What is the arc length of major arc AB if r = 30 and x = 60?


5pi

400

Is it possible to make a triangle with the following sides? Show the statement that proves yes or no.

29 ft, 62 ft, 17ft.

No.

17 + 29 cancel(>) 62

400

Name 3 kinds of parallelograms

ie. rectangle, rhombus, square

400

Write the coordinates of S'V'U'T of a dilation with a scale factor of 4.

S(-2,-2), V(-1,1), U(1,1), T(0,-2)

S'(-8,-8), V'(-4,4), U(4,4), T(0,-8)

400

What is the area of this triangle? (Round to 4 sig figs.)


A = (1/2)bc sin A

= (1/2)(5)(7) sin 49

A=13.2074

400

What is the area of the blue sector?


 157/360 pir^2 

 314/45 pi 

500

 Find the possible values of x.


angleMOP > angleMON

therefore 4x+12 > 5x+3

x < 9

500

Find x.


(1/2)(AC+TI)=VE

 (1/2)[(x+6)+(3x-2)]=4x+1 

(1/2)(4x+4)=4x+1

2x+2=4x+1

1=2x

x=1/2

500



x/5.9 = 3.1/4.8

4.8x=18.29

x=3.8

500

Solve for the variable. Round to 4 decimal places.


SAS - Law of Cosines

c^2 = a^2 + b^2 - 2ab*cos C


c = 6.6663

500

Solve for x. Round to the nearest tenth.


x2+212=(x+9)2

x2+121=x2+18x+81

40=18x

x=2.2

M
e
n
u