Reciprocal Identities
Pythgorean Identities
Negative Identities
Verifying Identities
Remember me?
100
csc x written as a reciprocal identity
1/sin x
100
This is the standard Pythagorean Identity.
(sinx)^2+(cosx)^2=1
100
cos(-x)=__________
cos(x)
100
Verify sinx/tanx=cosx.
sinx(cosx/sinx)=cosx
100
What is the period of y=Atan(Bx+C)?
Pi/B
200
sinxsecx simplies completely to ________
tan x
200
Prove that tan^2x+1=sec^2x.
Divide Pythagorean Identity sin^2x+cos^2x=1 by cos^2x.
200
csc(-x) = _________ (simplify using negative identities)
-csc(x)
200
Verify (1/cos^2x)-1=tan^2x.
Use reciprocal identity to get sec^2x-1 then use Pythagorean Identity.
200
Where does the graph of tan x have vertical asymptotes?
At k(pi) where k is an integer.
300
Simplify completely: secx/tanx
cscx
300
Simplify completely: [1-(cosx-sinx)^2]/(cosx)
2sinx
300
sec(-x)=________
secx
300
Daily Double!!! Verify (sec x)(sin x - cos x)=tan x -1
(1/cosx)(sinx-cosx)=(sinx/cosx)-(cosx/cosx)=tanx-1
300
Daily Double!! List the trig functions that have a period of 2pi.
sin x, cos x, csc x, sec x
400
Daily Double!! If cotx=-3/2 and cosx>0 find the exact values of the remaining trig functions.
tanx=-2/3, sinx=-2, cosx=3, cscx=-1/2, secx=1/3
400
Simplify (1/csc^2x)+(1/sec^2x).
1.
400
Daily Double!! sinx-([tan(-x)]/secx)
2sinx
400
Daily Double!!! Verify the identity: (1+cosx)/sinx + sinx/(1+cosx)=2cscx Hint: make a common denominator
;)
400
Find the phase shift and amplitude of y=5csc(4x-1).
Phase shift: 1/4, amplitude: DNE
500
If cosx=-4/5 and tanx=3/4 find the exact values of the remaining trig functions.
sinx=-3/5, cscx=-5/3, secx=-5/4, cotx=4/3
500
Show (sin^2x)/(1-cosx)=1+cosx Hint: use Difference of squares
Use Pythagorean Identity to rewrite sin^2x as 1-cos^2x, then use difference of squares.
500
Simplify cot(-x) completely.
cos(-x)/sin(-x)=cosx/(-sinx)=-cotx
500
Verify (1-cos^2x)/sin^3x=cscx
500
Find max and min of y=-13+4sin(2x).
Max:-9 Min:-17
Continue
ESC
Reveal Correct Response
Spacebar
M
e
n
u
Team 1
0
+
-
Trig Identities Jeopardy
No teams
1 team
2 teams
3 teams
4 teams
5 teams
6 teams
7 teams
8 teams
9 teams
10 teams
Custom
Press
F11
Select menu option
View > Enter Fullscreen
for full-screen mode
Edit
•
Print
•
Download
•
Embed
•
Share
JeopardyLabs
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500