Projections/
Components
Dot Products
Decomposing Matrices
Matrix Operations
Mystery
100

find the vector component of v= <1,0> onto =<3,4>

3/sqrt(5)
100

<1,0> • <0,1>

0

100

What behavior does this matrix have:

[[1, 0],

 [0, 1]]

Nothing - its the identity matrix

100

[[1, 0],          +           [[1, 0],

 [0, 1]]                         [0, 1]]

[[2, 0],

  [0,2]]

100

pick a number from 1-10

you get 100(x-5) points

200

find the vector projection of v= <3,4> onto =<5,-12>

we'll figure it out together!

200

<1,3> • <5,3>

14

200

What behavior does this matrix have:

[[5, 0],

 [0, 1]]

Stretches vectors horizontally by a factor of 5

200

[[7, v],          +           [[3, 2],

 [4, 5]]                         [4, 1]]

[[10, 2+v],

  [9,       6]]

200

how do you normalize a vector, how do you notate that, and what does the vector symbolize in such a scenario

you divide by the magnitude, you give it a hat(î), and now it just tells you direction.

300

find the projection of v= <7,2,5> onto =<4,4,8>

we'll figure it out together!

300

<1,5,6> • <1,9,2>

58

300

What behavior does this matrix have:

[[0, 0],

 [0, 1]]

Projects the vector onto the y-axis

300

[[2, 0],         multiply by           [[3, 2],

 [0, 3]]                                     [0, 2]]

[[6,4],

 [0,6]]

300

Find the determinant:

[[3, 1],

 [-2, 6]]

20
400

What is the component formula?

(ab)/(||b||)

400

<5,7,2,9> • <6,9,5,8>

175

400

What behavior does this matrix have:

[[0, 1],

 [-2, 0]]

90 degree ccw rotation, and scales by 2

400

[[2, 5],         multiply by           [[3, v],

 [7, 3]]                                     [6, 2]]

[[36,2v+10],

 [39,7v+6]]

400

How many points do you want to wager

If the sum of the digits is odd, you lose the points(in addition to the points you would lose for getting the question wrong)

If the sum of the digits is even, you double the points


500

What is the Projection Formula?

((ab)/(||b2||))b

500

Express in generic form

Lots of answers are acceptable here, like summations of ...s with a0betc

500

Give me the generic 2d matrices for scaling (the x and y individually) and reflecting(across the x,y, and x=y)

scaling: [[kx, 0],

             [0, ky]]

reflecting: [[1, 0],            [[-1, 0],              [[0, 1],   

                [0, -1]]             [[0, 1]                [1, 0]]

500

Give me your favorite matrix operation and solve the problem we give you :)

we shall decide whether you're worthy

500

What is the generic 2d rotation matrix

[[cos(θ), -sin(θ)],

 [sin(θ),  cos(θ)]

M
e
n
u