1 + tan²Θ / secΘ = sec Θ
Sec Θ = sec Θ
✅
Sec Θ csc Θ + √2 csc Θ = 0
No Solution
Θ= 3π/ 4 + 2π k
Θ = 5π/ 4 + 2π k
4 sin²x - 1 = 0
X = 30°, 150°, 210°, 330°
sinx + cos² x /sinx
Cscx
Sin2x = 2cotx Sin²x
Sin2x
✅
Cos²x + sine = 1
X = 0 + π k
x= π/2 + 2πk
Sinxcosx - cosx+sinx-1 = 0
90°
180°
1/ secx+1 - 1/secx-1
0
csc² Θ - cos² Θ csc² Θ =1
1 = 1
✅
Cosx + √3 = -cos x
X = 150° + 360 K
X = 210° + 360 K6sec² x -5 = 3
x = 30°, 150°, 210°, 330°
tan(x - π) = tan x
tan x = tan x
Sin(x + π) = -sinx
-sinx=-sin x
✅
2 sin Θ cos Θ + cos Θ = 0
Θ= 90° + 180 k
Θ = 210° + 360 k
Θ = 330° + 360 k
4cotx + 9 = 5cotx +8
X = 45°, 225°
Sin (x - π/2 ) = - cos x
- cos x = - cos x
Find all solutions of
Cos x + 1 = sin x in the interval [0, 2π]
X = π/2, 3π / 2
x = π