Functions operations and Inverse
Calculus:Derivatives and Integrals
Polar Coordinates
Sequences and Series
100

Given 𝑓(π‘₯) = π‘₯2 + 6 and 𝑔(π‘₯) = π‘₯ βˆ’ 1 

Find (𝑓 + 𝑔)(π‘₯). 


 (𝑓+𝑔)(π‘₯)=(π‘₯2+6)+(π‘₯βˆ’1)=π‘₯2+π‘₯+5  

100

Find the derivative of the function 𝑓(π‘₯)=4π‘₯3+3π‘₯2+5π‘₯+2. 

𝑓′(π‘₯)=12π‘₯2+6π‘₯+5  

100

Which of the following represent another pair of polar coordinates for point A (3,225Β°)? 

A. (βˆ’3,135Β°) 

B. (3,135Β°) 

C. (3,45Β°)

D. (βˆ’3,45Β°)

D. (βˆ’3,45Β°)

100

Find the 16th term of the arithmetic sequence βˆ’18,βˆ’6,6,18,… 

π‘Žπ‘›=π‘Ž1+(π‘›βˆ’1)𝑑 

π‘Ž16=βˆ’18+(16βˆ’1)(12)

 π‘Ž16=162  

200

Given 𝑓(π‘₯) = π‘₯2 + 6 and 𝑔(π‘₯) = π‘₯ βˆ’ 1 

 Find (π‘“βˆ™π‘”)(π‘₯). 


 (π‘“βˆ™π‘”)(π‘₯)=(π‘₯2+6 )(π‘₯βˆ’1)=π‘₯3βˆ’π‘₯2+6π‘₯βˆ’6  

200

If 𝑓(π‘₯)=2π‘₯3βˆ’4π‘₯2+5. Find 𝑓′′(2). 

𝑓′(π‘₯)=6π‘₯2βˆ’8π‘₯ 

𝑓′′(π‘₯)=12π‘₯βˆ’8 

𝑓′′(2)=12(2)βˆ’8=16  

200

Find the distance P1P2 between each pair of points to the nearest tenth degree. 

P1(3,40Β°),P2 (5,130Β°) 

P1P2=√34=5.8 

200

Find the sum of the geometric series Ξ£4(βˆ’3)π‘˜βˆ’1. from 1 to 7

𝑆= 2188  

300


 If 𝑓(π‘₯)=2π‘₯+5 and 𝑔(π‘₯)=3π‘₯ , find 𝑔(𝑓(1)). 


 π‘“(1)=2(1)+5=7 

𝑔(𝑓(1))=𝑔(7)=3(7)=21  

300

Find the slope of the tangent line to the graph of 𝑓(π‘₯)=3π‘₯2βˆ’4π‘₯+6 at π‘₯=3 ? 

𝑓′(π‘₯)=6π‘₯βˆ’4 

π‘š=6(3)βˆ’4=14  

300

Find the rectangular coordinates of the point with the given polar coordinates. 𝑃(βˆ’2,πœ‹)  

The rectangular coordinates of P are (2,0). 

300

In a physics experiment, a steel ball on a flat track is accelerated, and then allowed to roll freely. After the first minute, the ball rolled 120 meters. Each minute the ball travels only 40% as far as it did during the preceding minute. How far does the ball travel? 

𝑆= π‘Ž1/1βˆ’π‘Ÿ = 120/1βˆ’0.4 = 200 m

400

Find the inverse of the function 𝑓(π‘₯)=√π‘₯βˆ’1 . 

π‘“βˆ’1(π‘₯) = π‘₯2+1  

400

Find ∫(2π‘₯2+5π‘₯+7)𝑑π‘₯ 

2π‘₯3/3 + 5π‘₯2/2 + 7π‘₯ + 𝑐  

400

Convert the polar equation to rectangular form. π‘Ÿ=3π‘ π‘’π‘πœƒ  

π‘₯=3 

400


Determine whether each geometric series is convergent or divergent. 

21+63+189+β‹―  

divergent as r = 3 >1

500

If 𝑔(π‘₯)=π‘₯βˆ’4/π‘₯βˆ’5 , find the range of π‘”βˆ’1

Range = (βˆ’βˆž,5)βˆͺ(5,∞) 

500

The velocity of a flea’s jump can be defined as 𝑣(𝑑)=βˆ’10𝑑+4, where 𝑑 is given in seconds and velocity is given in meters per second. Find the position function 𝑠(𝑑) for the flea’s jump. Assume that for 𝑑= 0,𝑠(𝑑) = 5. 

𝑠(𝑑)=βˆ’5𝑑2+4𝑑+5  

500

For the complex number given below find the absolute value. 

𝑧=√2+√2 𝑖  

|𝑧|=√(√2)2+(√2)2=2 

500

A pendulum travels 12 centimeters on its first swing and 95% of that distance on each swing thereafter. Find the total distance traveled by the pendulum when it comes to rest. 

𝑆= π‘Ž1/1βˆ’π‘Ÿ = 12/1βˆ’0.95 = 240 cm

M
e
n
u