Simplifying expressions
Substitution
Solving
Graphing
Algebraic powers
100

y . y . y . y . x

xy4

100

a - 5c, when a = 7 and b = -3

= 7 - (5 . -3)
= 7 - (-15)
= 7 + 15
= 22

100

5x + 15 = 60

5x = 60 - 15

5x = 45

x = 9

100

Look at the set of coordinates below:

x: 1 , 2 ,  3  ,  4  ,  5  , 6

y: 4 , 7 , 10 , 13 , 16 , 19

Find the rule that generates this pattern?

y = 3x + 1

100

x. x

x8

200

2m . 2m . 2m

8m3

200

x + 8 - y, when x = 5 and y = 9

= 5 + 8 - 9

= 13 - 9 

= 4

200

13x + 12 = -1

13x = -1 - 12

13x = -13

x = -1

200

Look at the set of coordinates below:

x: 1 , 2 ,  3  ,  4  ,  5  , 6

y: 3 , 9 , 15 , 21 , 27 , 33

Find the rule that generates this pattern?

y = 6x - 3

200

a-4

1 / a4

300

2x2y . 3y2

6x2y3

300

2(a - b - c), when a = 3, b = - 6 and c = 9

= 2(3 - (-6) - 9)

= 2(3 + 6 - 9)

= 2(0)

= 0

300

15 - 8x = 135

-8x = 135 - 15

-8x = 120

x = -15

300

Look at the set of coordinates below:

x:  1  ,   2  ,   3  ,   4  ,   5  ,  6

y: -6 , -10 , -14 , -18 , -22 , -26

Find the rule that generates this pattern?

y = -4x - 2

300

(3a4)2

9a8

400

4p2q . 5p3q

20p5q2

400

3(x + y)2, when x = 6 and y = 8

= 3(6 + 8)2

= 3(14)2

= 3(196)

= 588

400

Three times James' age minus nineteen is 41. What is James' age?

3x - 19 = 41

3x = 41 + 19

3x = 60

x = 20

400

Look at the set of coordinates below:

x:    1   ,   2   ,   3   ,   4   ,   5   ,  6 

y: 10.5 ,  15  , 19.5 ,  24  , 28.5 , 33 

Find the rule that generates this pattern?

y = 4.5x + 6

400

3(2x4)4

= 3 . 16x16

= 48x16

500

2k2m . 3km . 5mk

30k4m3

500

4(x - 5)2 - y, when x = 2 and y =-2

= 4(2 - 5)2 - (-2)

= 4(-3)2 + 2 

= 4(9) + 2

= 36 + 2

= 38 


500

A tyre company has a discounted set of four tyres by $95 to give a sales price of $645. How much is the originial price of a single tyre?

4x - 95 = 645

4x = 645 + 95

4x = 740

x = $185

500

y = mx + c is a linear equation, explain why?

When graphed, it forms a straight line, and the highest power of the variable x is 1. 


This form also reveals that the relationship between x and y is constant and predictable, with a constant slope (m) and y-intercept (c).

500

2(3x2y3)4

= 2 . 81x8y12

= 162x8y12

M
e
n
u