One-Step Absolute Value Inequalities
|x|>5
x < -5, x > 5
|k+9| + 8 > 9
k > -8, k < -10
Solve
|x| = 3
x = 3, x = -3
|-2x+6| = 6
0, 6
|x+3| > 5
x < -8, x > 2
|-3 + x| - 2 > 1
x > 6, x < 0
|x| = -4
NO SOLUTION
Absolute value will never evaluate to be a negative number.
|5x| + 5 = 45
8, -8
|x+3| > -8
All Real Numbers!
|2v-7| + 6 < 5
No Solution!
|x+4| = 8
4, -12
3 |−8x| + 8 = 80
-3, 3
|x - 7| < -21
No Solution!
4|-7 + p| > -8
All Real Numbers!
|−3r| = 9
3, -3
3 |3 − 5r| − 3 = 18
-4/5, 2
|k - 3/2| < 1\2
k < 2, k > 1
9|6b| > 108
x > 2, x < -2
|x/5| = 2
10, -10
6 |1 − 5x| − 9 = 57
-2, 12/5