Limits
Derivatives
Assorted Precalculus
Grab Bag
100

Evaluate the limit.

\lim_{x\rightarrow 0}1/x


The limit does not exist!

100

Find the derivative of the function.

f(x)=\sqrt{x}-1/\sqrt{x}

f'(x)=\frac{1}{2\sqrt{x}}+\frac{1}{2x^{3/2}}

100

The exact value of

\cos({5pi}/6)

-\sqrt{3}/{2}

100

The average rate of change of 

f(x)=-3x^2

over the interval [1, 3].

-12

200

Evaluate the limit.

\lim_{x\rightarrow 0}\frac{1-e^{-2x}}{\secx}

0

200

Find the derivative of the function.

f(x)=\frac{x^3-5}{\ln x}

f'(x)=\frac{3x^2\ln x-x^2+5/x}{(\ln x)^2}

200

The exact value of 

tan(\frac{3\pi}{4})

-1

200

The population of a bacterial colony is approximately 

P(t)=100+61t+3t^2

thousand, t hours after observation begins. Find the rate the colony is growing after 5 hours.

91 thousand bacteria per hour

300

Evaluate the limit.

\lim_{h\rightarrow 0}\frac{\sin(x+h)-\sin(x)}{h}

\cos x

300

Find the derivative of the function.

f(x)=\cos(\tan(7x))

f'(x)=-7\sin(\tan(7x))\sec^2(7x)

300

\text{The value of } \sec\theta \text{ when}

\sin\theta=-\frac{2}{3} \text{ and } \pi<\theta<\frac{3\pi}{2}

-\frac{3\sqrt{5}}{5}

300

400

Evaluate the limit.

\lim_{x\rightarrow 0}\frac{\cos x-1}{x^2}

-1/2

400

Find the derivative of the function.

f(x)=\tan^{-1}(4x^3)-\ln(x^2+4)

f'(x)=\frac{12x^2}{1+16x^6}-\frac{2x}{x^2+4}

400

The exact solution to the equation


e^{2x}-4e^x-10=2

x=\ln6

400

Find an equation for the tangent line to the graph of 

\sqrt{x}+\sqrt{y}=3

at the point (4,1).

y-1=-1/2(x-4)

500

Evaluate this limit.

\lim_{x\rightarrow 0}\frac{\tan x-x}{x^3}

1/3

500

Find the derivative,  dy/dx .

x^2y^3=\csc(5x)+2x

dy/dx=\frac{2-5\csc(5x)\cot(5x)-2xy^3}{3x^2y^2}

500

The exact solution to the equation below.


\ln(x)+\ln(x-3)=\ln(7x)

x=10

500

Find the critical points of the function 

f(x)=\frac{x^2+3}{x+1}

{-3,-1,1}

M
e
n
u