Writing & Solving Equations
Systems of Equations
Quadratic Equations
100

Find 3 consecutive odd integers such that 4 times the sum of the first two is 62 less than the product of -30 and the third

-5, -3, -1

100

At a basketball game, adult tickets sold for $5 and children's tickets sold for $2. If 175 tickets were sold for a total of $686, how many of each type were sold?

112 adult tickets and 63 children's tickets

100

Factor and solve for x: 2x2 - 8x + 8

x = 2

200

Find three consecutive integers such that the sum of the first and third is 142.

70, 71, 72

200

Protein bars cost $0.45 each and protein cookies cost $0.30 each. If you spent $7.35, how many protein bars were purchased if they number 7 less than the number of protein cookies purchased?

7 protein bars

200

Factor and solve for y: -25 = -4y2

y = 5/2 and -5/2

300

Find four consecutive integers such that 8 times the sum of the first and the third is 40 greater than 10 times the fourth.

9, 10, 11, 12

300

In a box, there were $82 worth of quarters and dimes. If there were 300 more quarters than dimes, how many dimes and how many quarters were there?

20 dimes and 320 quarters

300

Factor and solve for z: 3z2 - 6z = 9

z = 3 and -1

400

Find three consecutive even integers such that the sum of the first and third equals the sum of the second and -14. 

-16, -14, -12

400

In a bag of change, there was $6.50 worth of dimes and quarters. If there were 5 more quarters than dimes, how many coins of each type did you have?

15 dimes and 20 quarters

400
Factor and solve for x: x2 - 6 = x

x = -2 and 3

500

Find four consecutive odd integers such that the sum of the second and third is 19 greater than the fourth

19, 21, 23, 25

500

Cat food cost $5 per bag, and dog food cost $3 per bag. If you bought 50 total bags and spent $190, how many of each did you buy? 

20 bags of cat food and 30 bags of dog food

500

Factor and solve for a: 63 = -a2 - 16a

a = -9 and -7

M
e
n
u