+/-/x Polynomials
Solving Quadratics
Special Quadratics
Transforming a Quadratic Graph
Solve by Completing the Square
100

(x² + 3x + 4) + (2x² - x -5)

x² + 3x + 4 + 2x² - x -5

3x²  + 2x - 1

100

Solve for n.

n² + 9n + 20= 0

(n + 4)(n + 5) = 0

n = -4 or n = -5

100

Factor.

z² - 25

(z + 5)(z - 5)

100

How does k change the graph compared to f(x) = x²?

+k = shifts up

- k = shifts down

100

x²  + 3x + 9

no solution

200

(3x² - 4x + 7) - (2x² + 3 - 9)

3x² - 4x + 7 - 2x² - 3 + 9

x² - 4x + 13

200

Solve for r.

r² + 16 - 8r = 0


r² - 8r + 16 = 0

(r - 4)(r - 4) = 0

r = 4

200

Factor.

7f² + 29f + 4    

7f² + 29f + 4

7f² + 28f + 1f + 4

7f(f + 4) + 1(f + 4)

(f + 4)(7f + 1)

200

How does h change the graph compared to f(x) = x²?

+h : shifts right

-h : shifts left

200

x²  + 6x + 4 = 0

x²  + 6x      =-4

x² + 6x + 9 =-4 + 9

(x + 3)(x + 3) = 5

 sqrt ((x + 3)(x + 3))  =  +- sqrt(5)

x + 3 =  +- sqrt(5) 

x = -3  +- sqrt(5) 

300

2(x + 3) - 4(x² - 4)

2x + 6 - 4x²+ 16

- 4x² + 2x + 22

300

Solve for v.

v² - 8v + 12 = 0


(v - 2)(v - 6) = 0

v = 2 or v = 6

300

3h² - 17h + 20

3h² - 12h -5h + 20

(3h² - 12h) + (-5h + 20)

3h(h - 4) + -5(h - 4)

(3h - 5)(h - 4)

300

Write the general equation for the standard form and vertex form of a quadratic equation.

Standard:

ax2 + bx + 3

Vertex:

a(x-h)2 + k

300

2x² - 5x + 10 = 0

 (5+-sqrt5)/2 

400

(x + 3)(x² + 5)

x^3 + 3x^2 + 5x + 15

400

Factor.

21 - 22m + m²

m² - 22m + 21

(m - 1)(m - 21)

400

Factor.

25y² - 36

(5y - 6)(5y + 6)

400

Describe the a, h, and k of the graph of this equation:

2(x-1)²+3

a = More closed. End behaviors point up.

h = shifts right 1 unit

k = shifts up 3 units

400

3x² - 5x - 7 = 0

(-5+-sqrt(109))/6

500

-3x(x-6)(x+6)

(-3x2 + 18)(x + 6)

= -3x3 - 18x2 + 18x + 108

500

Factor.

9 + 10t + t²

t² + 10t + 9

(t + 1)(t + 9)

500

100a² - 100a + 25

25(4a2 - 4a + 1)

25[4a2 - 2a - 2a + 1]

25[(4a2 - 2a) + (-2a + 1)]

25[2a(2a - 1) + -1(2a - 1)]

25(2a - 1)(2a - 1)

25(2a - 1)2

500

Describe the a, h, and k of the graph of this equation:

½ (x+3)²-2

a = More open. End behaviors points up.

h = (x-(-3)) = shifts left 3 units

k = shifts down 2 units

500

When should you complete the square to solve a quadratic equation?

When an equation is not factorable by whole numbers.

M
e
n
u