Adding Polynomials
Subtracting Polynomials
Multiplying Polynomials
Exponent Rules
Identifying Polynomials
100

Add the Polynomials

(4x + 9) +(x - 4)

5x + 5

100

Subtract the polynomials:

(g - 4) - (3g - 6)

-2g + 2

100

Multiply the Polynomials using Algebra Tiles:

3x2 (2x4)

6x6

100

Simplify the following:

 x^3*x^4 

x^7

100

What is the degree, leading coefficient, and number of terms for the following polynomial.

 3x^2+5x-7 

Degree: 2

Leading Coefficient: 3

Number of terms: 3

200

Add the polynomials:

(-3a - 2) + (7a + 5)

4a + 3

200

Subtract the polynomials:

(-5h - 2) - (7h +6)

-12h - 8

200

Multiply the Polynomials:

3(2x + 4x- 5)

12x+ 6x - 15

200

Simplify:


 y^7/y^2 

y^5

200

Classify the expression as a monomial, binomial, or trinomial. 

 8x^4-2x 

Quartic Binomial

300

Add the polynomials:

(x2 +3x + 5) + ( -x2 +6x)

9x + 5

300

Subtract the polynomials:

(-x2 - 5) - (-3x2 -x -8)

2x2 + x +3

300

Multiply the Polynomials:

−y2 (−8x2 − 6xy − y)

8y2x2 + 6y3x + y4 

300

Simplify:

 (a^2)^5 

a^10

300

Which term is the leading term of this polynomial, and what is its degree?

 -5x^5+2x^3-x+10 

Degree: 5

Leading Term: 

-5x^5

400

Add the polynomials:

(t2 + 3t3 -3) + (2t2 +7t -2t3

t3 +3t2 +7t -3



400

Subtract the Polynomials:

(k2 + 6k3 -4) - (5k3 + 7k -3k2)

k3 + 4k2 -7k -4

400

Multiply the Polynomials:

(x-2)(x+6)

x2+4x-12

400

Simplify:

 (m^-3*m^6)/m^2 

m

400

What is the degree of this polynomial? How many terms are in the expression?

 4x^3y^2-6xy+9 

Degree: 5

Terms: 3

500

Add the polynomials: 

(-1 + x2 + 2x) + (1 -2x + 2x2)

3x2

500

Subtract the Polynomials:

(2x - 3x) - (x2 -2x + 4)

-x2 + x - 4



500

Multiply the Polynomials:

 (2x-1)(x^2+6x-3) 

2x^3+11x^2-12x+3

500

Simplify:

 ((2x^3y^-2)/(4x^-1y^4))^2 

x^8/(4y^12)

500

What is the degree, leading coefficient, and type

 7x^4y-3x^2y^3+4xy-1 

Degree: 5

Leading Coefficient 7

Type: Polynomial

M
e
n
u