Operation of Complex Numbers
Quadratics
Operations of
Polynomials
Binomial Expansion
Rational Root Theorem
100

i184 is equal to i

false 

100

What method was used to solve this quadratic equation?

(x+72)= 16

√(x+72)= √16

x+72 = ±4

    /            \

x+72=-4     x+72=4

  -72  -72       -72  -72

x=-76         x=-68

square root method

100

Simplify: 9x-18y+5x

14x-18y

100

Fill in the blanks to complete pascal's triangle:

1

1 1

1 2 1

1 _ 3 1

1 4 6 4 1

1 5 _ 10 5 1

1 6 15 _ 15 6 1

1 7 21 35 35 _ 7 1

3, 10, 20, and 21

100

-4 is a possible root of x3+2x2-7x+4

True

200

Add: (3+5i)+(4-2i)

7+3i

200

What would the following step be?

step 1: x2 +2x-5= 43

step 2: x2 +2x= 48

step 3: x2+2x+1= 48+1

step 4: (x+1)= 49

step 5: x+1 = 7

Step 6: separate and solve

x+1= 7     x+1=-7

   -1  -1        -1  -1

x=6           x=-8

200

Add:

(17x2-9x+1)+(2x2+3x+2)

19x2-6x+3

200

Expand the binomial: (2x+4y)3

8x3+48x2y+96xy2+64y3

200

List all of the possible roots:

x3+4x2-x-10

{±1,±2,±5,±10}

300

Subtract: (-2+7i)-(-8+i)

6+6i

300

Solve using the square root method:

7x2 +3=346

x=7      x=-7

300

Multiply: (10x+4)(15x-3)

(150x2+30x-12)

300

What is the 3rd coefficient of the expansion?  (3x+7y)4

2646

300

Find all of the roots:

x3+3x2-14x+8

Roots: {2, (-5+√41)/2, (-5-√41)/2}

400

Multiply: (-9-9i)(8+8i)

-144i

400

Solve by factoring:

x2+11x+18=0

x= -2       x= -9

400

Multiply: (x+3)(8x2+5x-3)

8x3+29x2+12x-9

400

Expand the binomial: (2+2a)5

32+160a+320a2+320a3+160a4+32a5

400

Identify a,b, and c

x4+3x3-3x2-7x+6

a= 1  b= 2  c= -3

500

Divide: (3+15i)/(9-10i)

(-123+165i)/(181)

500

Solve using the quadratic formula:

f(x)= 5x2 + 9x-3

x=(-9+√141)/(10)     x=(-9-√141)/(10)

500

Divide: (x3-9x2+6x+2)/(x-6)

x2-3x-12-70/(x-6)

500

What is the last coefficient of the expansion? (1+5a)5

3125

500

Find all of the roots

x4-4x3+7x2-16x+12

Roots: {1,3,2i,-2i}

M
e
n
u