i184 is equal to i
false
What method was used to solve this quadratic equation?
(x+72)2 = 16
√(x+72)2 = √16
x+72 = ±4
/ \
x+72=-4 x+72=4
-72 -72 -72 -72
x=-76 x=-68
square root method
Simplify: 9x-18y+5x
14x-18y
Fill in the blanks to complete pascal's triangle:
1
1 1
1 2 1
1 _ 3 1
1 4 6 4 1
1 5 _ 10 5 1
1 6 15 _ 15 6 1
1 7 21 35 35 _ 7 1
3, 10, 20, and 21
-4 is a possible root of x3+2x2-7x+4
True
Add: (3+5i)+(4-2i)
7+3i
What would the following step be?
step 1: x2 +2x-5= 43
step 2: x2 +2x= 48
step 3: x2+2x+1= 48+1
step 4: (x+1)2 = 49
step 5: x+1 = 7
Step 6: separate and solve
x+1= 7 x+1=-7
-1 -1 -1 -1
x=6 x=-8
Add:
(17x2-9x+1)+(2x2+3x+2)
19x2-6x+3
Expand the binomial: (2x+4y)3
8x3+48x2y+96xy2+64y3
List all of the possible roots:
x3+4x2-x-10
{±1,±2,±5,±10}
Subtract: (-2+7i)-(-8+i)
6+6i
Solve using the square root method:
7x2 +3=346
x=7 x=-7
Multiply: (10x+4)(15x-3)
(150x2+30x-12)
What is the 3rd coefficient of the expansion? (3x+7y)4
2646
Find all of the roots:
x3+3x2-14x+8
Roots: {2, (-5+√41)/2, (-5-√41)/2}
Multiply: (-9-9i)(8+8i)
-144i
Solve by factoring:
x2+11x+18=0
x= -2 x= -9
Multiply: (x+3)(8x2+5x-3)
8x3+29x2+12x-9
Expand the binomial: (2+2a)5
32+160a+320a2+320a3+160a4+32a5
Identify a,b, and c
x4+3x3-3x2-7x+6
a= 1 b= 2 c= -3
Divide: (3+15i)/(9-10i)
(-123+165i)/(181)
Solve using the quadratic formula:
f(x)= 5x2 + 9x-3
x=(-9+√141)/(10) x=(-9-√141)/(10)
Divide: (x3-9x2+6x+2)/(x-6)
x2-3x-12-70/(x-6)
What is the last coefficient of the expansion? (1+5a)5
3125
Find all of the roots
x4-4x3+7x2-16x+12
Roots: {1,3,2i,-2i}