Basic Absolute Value
Slides
Stretches
Reflections
Multiple Transformations
100

Evaluate the following absolute expression

 2|-6+1|-|3(2-5)| 

1

100

How do you identify slides from an equation? Explain the difference between Horizontal and Vertical slides

H slides: + or - on the inside

V slides: + or - on the outside

100

Write an example of a vertical stretch and a horizontal stretch of factor 5 on the absolute value parent function. (Hint: 2 functions needed)

V Stretch: 

f(x)=5abs(x)

H Stretch: 

f(x)=1/5abs(x)

100

Which axis does a horizontal reflection reflect across?


Which axis does a vertical reflection reflect across?

H: y-axis

V: x-axis

100

Identify all transformations in the following absolute value function

 f(x)=-2|x+4| 

Vertical Reflection

Vertical stretch factor 2

Horizontal shift 4 to the left

200

List the solutions to the following absolute value equation

 abs(x)=10 

x = 10, -10

200

Identify all slides in the following absolute value function

f(x) = -4|x + 1|- 18

Slide 1 Left

18 Down

200

Identify all stretches in the following absolute value function

 f(x)=-abs(x/4-17)+12 

horizontal stretch factor 4

200

Identify all reflections in the following absolute value function

 f(x)=2|x-3|+4 

NONE

(No reflections)

(or you could say a double vertical reflection)

200

Identify all transformations in the following absolute value function

 f(x)=-3abs(x-42)+63 

vertical reflection

vertical stretch factor 3

shift 42 right, 63 up

300

Compute the following absolute value expression

|4-10|/-2*|(-4-6)/5| 


-6

300

Write the absolute value parent function with the following transformations applied:

Shift 12 up, 216 to the right

f(x)=abs(x-216)+12

300

Write the absolute value parent function with the following transformations applied:

Vertical stretch factor  3 

Horizontal stretch factor   5  

f(x)=3|x/5|

300

Write the absolute value parent function with the following transformations applied:

2 horizontal reflections

5 vertical reflections

f(x)=-abs(x)

300

Write a quadratic function (x2) with the following transformations applied:

vertical stretch factor 5

vertical reflection

slide left 9, down 3

f(x)=-5(x+9)^2-3

400

State the domain and range of the absolute value parent function

D: All real numbers, 

(-infty, infty)

R: 

[0, infty)

400

Identify all slides, and write the equation of the absolute value function below

f(x)=abs(x-1)+5

400

Identify all stretches, and write the equation of the absolute value function below

f(x)=3|x|

400

Identify all slides and reflections and write the absolute value function graphed below

f(x)=-|x|+2

400

Below is a photo of a transformed quadratic function. Identify all transformations and write the function below:

(hint: a normal quadratic function goes over 1, up 1)

f(x)=-1/2(x-5)^2-4

500

write an absolute value equation/function that has NO SOLUTION

Many different answers

Example answer:

|2x+5|=-3

500

Write the function with the following slides applied:

Parent function:  sqrt(x) 

Shifts:   16 to the left, 190 down

f(x)=sqrt(x+16)-190

500

Write the function with the following transformations applied

Parent function:  x^3 

Transformations: Vertical stretch factor 15

f(x)=15x^3

500

Write the function with the following transformations applied

Parent Function: Quadratic

Transformations applied: Vertical reflection,

horizontal stretch factor 4

f(x)= -1/4x^2

500

Write the function with the following transformations applied

Parent function:   f(x)=cos(x) 

Transformations:

shift up 5 right 4

vertical stretch factor 4

vertical reflection

f(x)=-4cos(x-4)+5

M
e
n
u