Operation of complex numbers
Quadratics
Operations of polynomials
Binomial Expansion
Rational Root Theorem
100

(3+4i)+(2+3i)=

(5+7i)

100

x2-6x+4=0

x=3+√5, x=3-√5

100

(3x2-2x+1) + (2x-1)

3x2

100

(2x-3)3=

8x3-36x2+54x-27

100

2x3+3x2+2x+1

x=-1,x=-1/4+i√7/4,x=-1/4-i√7/4

200

(6+7i) - (4+8i) =

(2-1i)

200

x2-8x+5=0

x=√11+4

x=4-√11

200

(2x2-4x+6) - (3x-2)

2x2-7x+8

200

(3x+2)4=

81x4+216x3+216x2+96x+16

200

 2x3+12x2+22x+12

x=-1,x=-2,x=-3

300

(7+6i)(8-5i)=

(86+13i)

300

x2+9x-8=0

x=√113-9/2

x=-√113-9/2

300

(5x2-6x+4)(4x+4)

20x3-4x2-8x+16

300

(2x-2)5=

x5-10x4+40x3-80x2+80x-32

300

2x3+4x2+5x+3

x=-1,x=-1/2+i√5/2,x=-1/2-i√5/2

400

6-2i/3-2i

22/13 + 6/13i

400

x2-13x+3=0

x=√157+13/2

x=13-√157/2

400

(3x2+2x+7)/(3x-6)

x+8/3 +23/3x-6

400

(x-2)6=

x6-12x5+60x4-160x3+240x2-192x+64

400

2x3+4x2+26x+24

x=-1,x=-1/2+i√47/2,x=-1/2-i√47/2

500

(13-7i)(4+8i)

(108+76i)

500

2x2-13x+6=0

x=1/2

x=6

500

(6x3-3x2+6x-11)(12x-8)


72x4-84x3+96x2-180x+88


500

(2x+1)7=

128x7+448x6+672x5+560x4+280x3+84x2+14x+1

500

2x3+4x2+18x+16

x=-1,x=-1/2+i√31/2,x=-1/2=i√31/2

M
e
n
u