-2x + 7x = -15
x = -3
4x - 3y = -15
-4x - 10y = 2
(-3,1)
State standard form of a quadratic equation.
y = ax2 + bx + c
Factor: x2 + 2x - 15
(x - 3)(x + 5)
Identify the GCF of this expression:
6x2 + 10xy - 14x
2x
-5(1 - 3n) = -95
n = -6
-x + 6y = -18
3x - 12y = 30
(-6, -4)
Determine the vertex of this quadratic:
y = 3x2
(0, 0)
Factor: x2 - 17x + 72
(x - 8)(x - 9)
State the 3 types of solutions to a system of linear equations.
1 solution, no solution, infinite solutions
-5n - 4 = -2n + 11
n = -5
y = 4x - 11
-4x - 2y = 10
(1, -7)
Determine the vertex of this quadratic:
y = (x - 5)2 + 2
(5, 2)
Factor: 7x2 - 44x + 12
(7x - 2)(x - 6)
Determine the vertex of this quadratic:
y = 2(x + 1)2 + 7
(-1, 7)
-3(-4b + 6) = 38 + 4b
b = 7
2x + 2y = 18
-3x - 7y = -31
(8, 1)
Determine the vertex of this quadratic:
y = 3x2 - 12x + 15
(2, 3)
Solve: 2x2 - 11x - 21
(2x+3)(x-7)
Solve the inequality:
8(x - 3) < -24 + 8x
No Solution
x + 2(1 - 8x) = -2(6x - 4)
x = -2
y = 6x + 23
y = 3x + 14
(-3, 5)
Determine if this quadratic would have a min (opens up) or max (opens down) value & explain why:
y = -x2 + 3x - 9
max value because negative a-value
Solve: 10x2 - x - 3
(5x-3)(2x+1)
Factor Completely: 12x2 - 3
3(2x + 1)(2x - 1)