Operations of Complex Numbers
Quadratics
Operations of Polynomials
Binomial Expansion
Rational Root Theorem
100

Add the Complex Numbers:

(6+18i)+(-5-2i)

1+16i

100

2x+3x+1=0

Solve using the Quadratic Formula

-1/2 and -1

100

(4x-2y)+(-2x+6y)

2x+4y

100

(x+2y)3

x3+6x2y+12xy2+8y3

100

f(x)=x3+x2-17x+15

Final Roots: 1,3,-5

200

Subtract the Complex Numbers

(5-6i)-(3-2i)

2-4i

200

(x-2)2=49

Use the Square Root Method to solve.

x=9, x=-5

200

(6x2+3x-5)-(4x2-2x+3)

2x2+5x-8

200

(b+4)5

b5+20b4+160b3+640b2+1280b+1024

200

f(x)=2x3-3x2-11x+6

Final Roots: -2, 3, 1/2

300

Multiply:

(4+i)(7-3i)

31-5i

300

Factor:

x2-13x+22=0

x=2, x=11

300

Multiply.

(4x-3)(5x-12)

20x2-63x+36

300

(x-2y)6

x6-12x5y+60x4y2-160x3y3+240x2y4-192xy5+64y6

300

f(x)=x3-x2-34x-56

Final Roots: -2, 7, -4

400

(7-3i)2

40-42i

400

Factor:

3a+11a+6=0

a=-3, a=-2/3

400

Solve using the Area Model.

(3x2-2x+7)(-10x2+4x+1)

-30x4+32x3-75x2+26x+7

400

(2y-x)7

128y-448y6x+672y5x2-560y4x3+280y3x4-84y2x5+14yx6-x7

400

f(x)=3x3-4x2-17x+6

Final Roots: -2, 3, 1/3

500

Divide:

1+2i/7+2i

11+12i/53

500

Solve by using Completing the Square:

2x2+4x+38=-6

x=-1±i√21

500

Use Synthetic Division to solve.

(x4-1)/(x+1)

x3-x2+x-1

500

(x4-y)5

x20-5x16y+10x12y2-10x8y3+5x4y4-y5

500

f(x)=x4-x3-12x2-2x+8

Final Roots: -1, 4, -2±√12/2

M
e
n
u