Unit 1
Unit 2
Unit 3
Unit 4
100

Create a function, f(x), that models the graph below.

f(x) = -1/3abs(x - 3) + 5

100

Solve for x:


9x^2 + 6x - 16 = 7

x = (-1 +- 2sqrt6)/3

100

Create a polynomial function, in factored form, with the smallest possible degree. Assume the a-value is either 1 or -1.

p(x) = -(x + 3)^2(x - 1)^3(x - 5)

100

Identify any asymptotes, intercepts, and/or holes of the following function:

f(x) = (x^3 - x^2 - 12x)/(-4x^2 + 12x)

Intercepts: (4, 0), (-3, 0)

Hole: (0, -1)

Asymptes: x = 3 

y = -1/4x - 1/2


200

Describe the domain, range, interval(s) of increasing and interval(s) of decreasing in interval notation.

Domain: [-6, 8)

Range: [-7, 9]

Increasing: (-2, 0) U (4, 8)

Decreasing: (-6, -2) U (0, 4)

200

Find all possible solutions (real and imaginary):


9x^2 + 2x + 11 = -9x

x = (-11 +-5isqrt11)/18

200

Find all real and imaginary zeros:

y = x^3 - 3x^2 + x - 3

x = 3, +-i

200

Create an equation that models the function below.

f(x) = 2sqrt(-2(x + 1)) - 5

300

Describe the transformations, using proper mathematical language, of f(x) if...

g(x) = 4/3f(-1/2x + 7) - 3




-vertical stretch by a factor of 4/3

-reflection over the y-axis

-horizontal stretch by a factor of 2

-translation right 14, down 3

300

Find the maximum or minimum value of the function below. Your answer should be a simplified fraction. 

f(x) = -x^2 - 5x + 7

max value: 

53/4

300

Find all real and imaginary roots of the following polynomial:

y = 8x^3 + 27

x = -3/2, (3 +-3isqrt3)/4

300

Simplify. List excluded values.


(6x^2 - 33x +15)/(2x^2 - 5x - 3) times (3 - x)/(x^3 + 5x^2 + x + 5) divide (2x^2 - 5x + 2)/(2x^2 + 15x + 7)


[-3(x + 7)(x - 5)]/[(x^2 + 1)(x - 2)(x + 5)

x!= 1/2, -1/2, 3, -5, -7, 1

400

What is the average rate of change of the function below over the interval [-1, 4]?

f(x) = -2x^2 + 5 

-6

400

Simplify the following expression:


(-4i^34sqrt-9)(-5 - 2i)


24 - 60i

400

Find the 7th term of the binomial expansion of 

(4x - 3)^9

3,919,104x^3

400

Solve.

5/(2-x) + (x - 5)/(x + 2) + (3x + 8)/(x^2 - 4) = 0

x = 1, 8

500

Consider these three coordinated from some function, f(x):  (-2, 1), (3, -4), (7, 0)

Name three coordinates of g(x) be if ...

g(x) = -3/2f(5/2x - 15/2) + 5


(11/5, 7/2), (21/5, 11), (29/5, 5)

500

Rewrite the following equation in vertex form:


y = 4x^2 - 12x + 5

y = 4(x - 3/2)^2 - 4

500

Find all real and imaginary zeros of the function:

f(x) = x^5 -4x^4 + 4x^3 - 16x^2 + 3x - 12

x = 4, +-isqrt3, +-i

500

Simplify.

(1/(3a) - 1/(3b))/(a/b - b/a)

-1/(3(a + b))

M
e
n
u