Vocab
Quadratics & Polynomial Functions
Solutions of Polynomial Functions
Rational Functions
100

The imaginary number

i=√(-1)

100

Describe how the graph

y=-(x-4)^2+1

 is transformed from the parent function

y=x^2

.

Reflected over the x-axis

Left 4

Down 1

100

Divide.

(24x^2-x-10)/(3x-2)

8x+5

100

Find all asymptotes of the function

(2-x)/(x+3)

V.A. x=-3

H.A. y=-1

200

vertex form of quadratic

f(x)=a(x-h)^2+k

200

Identify the vertex and any x-intercepts.

f(x)=(x-4)^2-4

Vertex: (4,-4)

x-int: (2,0), (6,0)

200

Find the remainder (write your remainder as a fraction).

(2x^3+6x^2-14x+9)/(x-1)

3/(x-1)

200

Find all the zeros of the function

f(x)=(x^3+3x^2-4x-12)/(2x^2-x-6)

x=-3,-2

300

standard form of quadratic

f(x)=ax^2+bx+c

300

Write the vertex form of the quadratic function that has the vertex (2,3) and passes through the point (0,2).

f(x)=-1/4(x-2)^2+3

300

Is x = -2 a factor of the polynomial?

f(x)=x^4+10x^3-24x^2+20x+44

No; f(-2) = -156

300

Find the domain of the function. 

(7+x)/(7-x)

Domain: All real numbers x except x=7

OR

Domain: (-∞, 7) U (7, ∞)

400

rational function

f(x)=(N(x))/(D(x) )

400

Describe the transformation of the function from f(x)=x3.

f(x)=2(x-1)^3+3

Vertical stretch of a factor of 2

Right 1

Up 3

400

If (x-4) is a factor of

f(x)=x^3+4x^2-25x-28

, find the remaining factors. 

(x+1)(x+7)

400

Find the hole of the graph:

f(x)=(2x^2-7x+3)/(2x^2-3x-9)

Hole: (3, 5/9)

500

extrema

relative maxima or minima

500

Use the Leading Coefficient Test to describe the end behaviors of the graph.

-x^5-7x^2+10x

Up, Down

500

Use the Rational Zero Test and list all the possible rational zeros.

f(x)=2x^3+21x^2-x-6

+-1,+-2,+-3,+-6,+-1/2,+-1/3,+-1/6,

500

Find the slant asymptote of the function:

(2x^3)/(x^2-3x-18)

S.A. at y=2x + 6

600

conjugates

Let  f(x)  be a polynomial function that has real coefficients. If  a+bi , where  b≠0 , is a zero of the function, then  a-bi   is also a zero of the function.

600

Find all zeros to the factored form polynomial:

f(x)=x(x+3)^2

x=-3, -3, 0

600

What is the minimum degree of this polynomial?

Degree = 4

600

Sketch the function 

f(x)=(2x-1)/(x-5)

700

The standard form of a linear binomial function

 f(x)=ax+b  

700

Find a polynomial function that has the given zeros.  Assume a = 1.

-2, 1, 1, 5

f(x)=(x+2)(x-1)^2(x-5)

700

Simplify and write the result in standard form.

sqrt(-9)+3+sqrt(-36)

3+9i

700

Write a rational function for the graph:

f(x)=(x+2)/((x-1)(x+3))

800

The standard form equation of a binomial quadratic with imaginary solutions

y=ax^2+b , where  b>0  .

800

Use a graphing calculator to determine interval(s) where the polynomial function is increasing: 

f(x)=2x^4+7/2x^3-2

(-1.313,∞)

800

Simplify so there are no radicals in the denominator.

(1-7i)/(2+3i)

(-19-17i)/13

800

Write a rational equation with removable discontinuity at x = 3, a vertical asymptote at x = 0, and exists entirely in quadrants 1 and 2.

f(x)=(x-3)/((x^2)(x-3))

M
e
n
u