f (x) = x^2 − 3x; Find f (−8)
88
Identify the vertex of f(x) = x^2 -18x+86
vertex:(9, 5)
Find the value of c that completes the square. x^2 + 6x + c
c=9
Solve the equation. 27 = x^(3/2)
9
h(x) = 3x + 3 g(x) = −4x + 1 Find (h + g)(10)
-6
Factor: x^2 − 7x − 18
(x − 9)(x + 2)
Find the value of c that completes the square x^2 + (1/2)x + c
1/16
Solve: 26 = −1 + (27x)^(3/4)
3
f (n) = 2n g(n) = −n − 4 Find ( f o g)(n) Hint: (f o g)(n)= f(g(n))
-2n-8
Factor: 3b^3 -5b^2 +2b
b(3b − 2)(b − 1)
Solve each function by completing the square x^2 − 12x + 11 = 0
{11,1}
simplify (p + 4)/(p^2 +6p +8)
1/(p+2)
Solve: 3(x+2)+2(x-4)+1=-26
x=-5
g(a) = 2a + 2 h(a) = −2a − 5 Find (g o h)(−4 + a)
-4a +8
Factor: r^3 − 7r^2 + 10r
r(r-5)(r-2)
Solve the equation by completing the square x^2 + 14x − 15 = 0
{1,-15}
(n+3)/(n+2) ÷ ((n-1)(n+3))/((n-1)^2)
(n-1)/(n+2)
Simplify: (24x^4y^3)/(20x^2y^5)
(6x^2)/(5y^2)
Find (gh)(x) if g(x)=x^2 and h(x)=x-8
x^3-8x^2
Find the discriminant of each quadratic equation then state the number of real and imaginary solutions. 9n^2 − 3n − 8 = −10
−63; two imaginary solutions
Solve by completing the square 6x^2 − 48 = −12x
{2, −4}
solve: (a − 2)/(a + 3) -1= 3/(a+2)
-19/8