Dividing Polynomials by Binomials
Negative Exponents
Simplifying Polynomials
Interval Notation and Linear Inequalities
Quadratic Equations
100

Divide using synthetic division.

(x^4 - 3x^3 - 11x^2 + 5x + 17) ÷ (x + 2)

x^3 - 5x^2 - x + 7 + (3) / (x + 2)

100

Simplify the expression.

(Use positive exponents in your answer)

(f^-3 / g^-2)^4

g^8 / f^12

100

Simplify:

-4x + 3x2 - 7 + 9x - 12x2 - 5x4

-5x4 - 9x2 + 5x - 7

100

Solve the inequality and give your answer in interval notation.

2x - 5 > 3

(4, ∞)

100

Solve the quadratic equation by factoring.

x^2 + 7x + 12 = 0

x = -3, -4

200

Divide using synthetic division.

(x^5 - 3x^3 - 4x - 1) ÷ (x - 1)

x^4 + x^3 - 2x^2 - 3x - 6 + (-7) / (x - 7)

200

Simplify the expression.

(Use positive exponents in your answer)

(34x / 2y) (17xy)^-1

1 / y^2

200

Simplify:

(3p2 + 8) + (-p2 + 5)

2p2 + 13

200

Solve the inequality and give your answer in interval notation.

4x - 9 < 11

(-∞, 5)

200

Solve the quadratic equation by factoring.

2x^2 + 4x - 6 = 0

x = 1, -3

300

Divide using long division.

(3x^3 - 5x^2 + 10x - 3) ÷ (3x + 1)

x^2 - 2x + 4 + (-7) / (3x + 1)

300

Simplify the expression.

(Use positive exponents in your answer)

(m / n)^-2 (n / m)^4

n^6 / m^6

300

Simplify:

(3x + 2) - (x + 4) (x + 1)

-x2 - 2x - 2

300

Solve the inequality and give your answer in interval notation.

7 - 3x ≥ 9

(-∞, -2/3]

300

Solve the quadratic equation by completing the square.

x^2 + 10x + 5 = 0

x = -5 ± √20

400

Divide using long division.

(2x^3 - 9x^2 + 15) ÷ (2x - 5)

x^2 - 2x -5 + (-10) / (2x - 5)

400

Simplify the expression.

(Use positive exponents in your answer)

x^-12 / x^-4 * y^-8

y^8 / x^8

400

Simplify:

(x2 + 2x + 7) (x2 + x - 6)

x4 + 3x3 + 3x2 - 5x -42

400

Solve the inequality and give your answer in interval notation.

3x + 11 ≥ 6x + 8

(-∞, 1]

400

Solve the quadratic equation by using the quadratic formula.

x^2 + 5x - 6 = 0

x = 1, -6

500

Divide using long division.

(4x^4 + 1 + 3x^3 + 2x) ÷ (x^2 + x + 2)

4x^2 - x - 7 + (11x + 15) / (x^2 + x + 2)

500

Simplify the expression.

(Use positive exponents in your answer)

(a^2)^-7 * b^0 / a^3 * b^-4

b^4 / a^17

500

Simplify:

5x^3 - 14x^2 - 10x + 3 - (4x + 3) * x^2 - (8 - 10x)

x^3 - 17x^2 - 5

500

Solve the inequality and give your answer in interval notation. 

3(4x - 1) ≤ 15x + 12

[-5, ∞)

500

Solve the quadratic equation by using the quadratic formula.

2x^2 - 10x + 5 = 0

x = (10 ± √60) / 4

M
e
n
u