a + a =
a + a = 2a
25a − 3a =
25a − 3a = 22a
c + 3c - 14c + c =
c+3c−14c+c=(1+3−14+1)c
=(−9)c
5 × 3w =
5 × 3w =
w·w·w + w·w·w + w·w·w + w·w·w + w·w·w = 15w
7x(-3x - 5) =
7x(−3x−5)=7x·(−3x)+7x·(−5)
=−21x2−35x
p + p + p + p + p + p + p + p + p + p + p
p + p + p + p + p + p + p + p + p + p + p = 11p
20g - 27g - 5g =
20g - 27g - 5g = -12g
k - (-4k) + k + k + k - k =
=(1+4+1+1+1-1)k
=8k
p × 5 × s =
(order matters)
p × 5 × s
= 5ps
Coefficient than by alphabetical order
(-4 - 4f)(-4) =
(-4 - 4f)(-4) =
(-4)(-4 - 4f)
= 16 + 16f
7f + 12f + 17f =
7f + 12f + 17f = 36f
120g - 54g - 23g - g =
120g - 54g - 23g - g = 42g
-2b2 - 5b3 + 7b2 =
−2b2−5b3+7b2=(−2+7)b2−5b3
Now, calculate the sum:
=5b2−5b3
12y × 13y =
The coefficient is 12×13=156 and the variable part remains "y".
So, the expression simplifies to:
12y × 13y = 156y2
(7p + 2h)(-7) =
(7p+2h)(−7h)=7p(−7h)+2h(−7h)
=−49ph−14h2
14c + 17c + 37c + 19c =
14c + 17c + 37c + 19c = 87c
72x2 − 45x2 −13x2 −3x2 −5x2 =
72x2 − 45x2 −13x2 −3x2 −5x2 = 6x2
2v2n - (-v2n) =
2v2n - (-v2n) =
2v2n + v2n =
3v2n
8v² × 8v8
8v2 × 7v2 = 64v10
4h2(-7 + 3h - 2p) =
4h2(−7+3h−2p)=
4h2(−7)+4h2(3h)+4h2(−2p)
= −28h2+12h3−8h2p
1/2a + 3/4a + 1/4a =
1/2a + 3/4a + 1/4a = 1&1/2a or 1.5a
3/4x− 1/2x− 2/3x− 1/6x =
3/4x− 1/2x− 2/3x− 1/6x = -7/12x
2a2b - 4a2b - 9a2b - 2b2a =
2a2b - 4a2b - 9a2b - 2b2a =
(2 - 4 - 9)a2b - 2b2a =
-11a2b - 2b2a
8c⁴ × 12c³ =
8c⁴ × 12c³
= (8·12) x c4+3 =
= 96c7
2c(7c + 9c2 - bc3 -2c - 8c2) =
=2c(7c−2c)+2c(9c2−8c2)−2c(bc3)
= 10c2+2c3−2bc4