Add Variables
Subtract Variables
Add/Subtract multiple variables
Multiplying Variables
Distributive Property
100

a + a =

a + a = 2a

100

25a − 3a =

25a − 3a = 22a

100

c + 3c - 14c + c =

c+3c−14c+c=(1+3−14+1)c 

=(−9)c

100

5    ×    3w = 

5    ×    3w =

w·w·w + w·w·w + w·w·w + w·w·w + w·w·w = 15w

100

7x(-3x - 5) =

7x(−3x−5)=7x·(−3x)+7x·(−5) 

=−21x2−35x  

200

p + p + p + p + p + p + p + p + p + p + p

p + p + p + p + p + p + p + p + p + p + p = 11p

200

20g - 27g - 5g =

20g - 27g - 5g = -12g

200

k - (-4k) + k + k + k - k =

=(1+4+1+1+1-1)k

=8k

200

p    ×    5    ×    s =

(order matters)

p    ×    5    ×    s 

= 5ps

Coefficient than by alphabetical order

200

(-4 - 4f)(-4) = 

(-4 - 4f)(-4) =

(-4)(-4 - 4f)

= 16 + 16f


300

7f + 12f + 17f =

7f + 12f + 17f = 36f

300

120g - 54g - 23g - g =

120g - 54g - 23g - g = 42g

300

-2b2 - 5b3 + 7b2 =

−2b2−5b3+7b2=(−2+7)b2−5b3

Now, calculate the sum:

=5b2−5b3

300

12y    ×    13y    =

The coefficient is 12×13=156 and the variable part remains "y".

So, the expression simplifies to:

12y    ×    13y    = 156y2

300

(7p + 2h)(-7) = 

(7p+2h)(−7h)=7p(−7h)+2h(−7h) 

=−49ph−14h2

400

14c + 17c + 37c + 19c =

14c + 17c + 37c + 19c = 87c

400

72x− 45x−13x−3x−5x2 =

72x− 45x−13x−3x−5x2 = 6x2

400

2v2n - (-v2n) =

2v2n - (-v2n) =

2v2n + v2n =

3v2n

400

8v²    ×    8v8

8v× 7v= 64v10

400

4h2(-7 + 3h - 2p) =

4h2(−7+3h−2p)=

4h2(−7)+4h2(3h)+4h2(−2p)

= −28h2+12h3−8h2p  

500

1/2a + 3/4a + 1/4a =

1/2a + 3/4a + 1/4a = 1&1/2a or 1.5a

500

3/4x− 1/2x− 2/3x− 1/6x =

3/4x− 1/2x− 2/3x− 1/6x = -7/12x

500

2a2b - 4a2b - 9a2b - 2b2a =

2a2b - 4a2b - 9a2b - 2b2a =

(2 - 4 - 9)a2b - 2b2a =

-11a2b - 2b2a

500

8c⁴    ×    12c³ =

8c⁴    ×    12c³ 

= (8·12) x c4+3 =

= 96c7

500

2c(7c + 9c- bc3 -2c - 8c2) =

=2c(7c−2c)+2c(9c2−8c2)−2c(bc3)

= 10c2+2c3−2bc4  

M
e
n
u