Operations on Integers
Variables, Terms and Expressions
Equations
Equations
Equations
100

Adding Integers

-3 + -5 =

-8

100

10x + 6y - 5x = 

Add like terms 

10x + -5x= 5x 

Answer: 

5x + 6y

100
Solve the equation: 


6x = 18

X = 3

100

Use the addition principle to this equation and then find the solution.

5y - 7 = 13

Add the opposite to cancel out

5y = 20 

y = 4

100

4x = -96

X = -24

200

Adding Integers 

(PEMDAS)

(6 + -4) + 7=

9

200

5 (ab)2 + 6 (ab)- 4 (ab)2 + 3 (ab)2 =

Remember with adding exponents they stay the same.

=10 (ab) 2

200

Equivalent Equations

5x - 3x = 4 + 10

2x = 14

x=7

200

Use the addition principle and then find the solution 

3x = 11x + 24


-8x = 24

x = - 3

200

Multiplication Principle for Equaitons

5x /2 = 30

60/5 

x= 6

300

Subtracting Integers


10 - 3 - 6 - 5 = 

10 + - 3 + -6 + -5 = -4

300

2x + 5y + 3 + 7x + 2y + 7=

9x + 7y + 10

300

Simplify the equation by combining like terms then find the solution

-4x = 19 + 9


- 4 x = 28

x = -7

300

Simplify each side before using the Addition Principle

5x - 3x + 8 = 4 + 4x -6

Step 1

2x + 8 = -2 + 4x

Step 2 

-2x = -10

x = 5


300

Use the Division Principle to solve this equation

3 (x - 2)/3 = 99


Step 1 

x - 2 = 33

Step 2

x = 35

400

Order of Operations 

(PEMDAS)

( 3 - 5 ) X ( 6 - 10)=

(3 + -5) = -2

(6 + -10) =  -4

-2 + -4 = -6

400

Use Distributive Principle  

x + 4 ( x - 6) =


1x + 4x - 24 

Answer: 

5x - 24

400

Solve each equation


4x + 7x -4x = 56

7x = 56

x= 8

400

Simplify and use Addition Principle

7 - 4x + 3 = x - 16 - 3x

Step 1

-4x + 10 = -2x -16

Step 2

-2x + 10 = -16

Step 3  -2x = -26

X= 13

400

Use Multiplication and Division principle

3 (2x - 1)/7 = 9

Step 1: cancel the 7

Step 2: cancel the 3

Step 3: 2x -1 = 21

Step 4: 2x = 22

x = 11

500

Remember to (PEMDAS)

5 - 3 X 2 - 6 =

5 + -3 X 2 + -6 = -7

500

Find the value of this expression when X = 3


10x - (3x) (2x) + x(2x)

1st step

10x - 6x + 2x3

2nd step

10 X 3 - 6 X 3 X 3 + 2 X 3 X 3 X 3

30 - 54 + 54 = 30



500

27= 6a + 5a - 2a

27= 9a

a = 3

500

The Division Principle for Equations

1 - 37/ 2 - 20

-36/-18 = 2

500

Use Distributive Principle to do multiplication

-5 (3x2 - 6x + 2)

Answer: 

-15x2 + 30x - 10

M
e
n
u