vector addition
vector subtraction
Magnitude of Vector
Direction of Vector
Magnitude and Direction of Vector
100

<3,5> + <9,2>

What is <12,7>

<3+9,5+2> = <12,7>

100

<3,2> - <7,1>

What is <-4,1>

<3-7,2-1>=<-4,1>

100

<3,9>

What is √90 

√(3)2+(9)2=√9+81=√90

100

<4,7>

What is 1.0517 radians or 60.251 degrees

tan-1(7/4)

100

<6,2>

What is √40 and 18.4349 degrees.

√(6)2+(2)2=√40

tan-1(2/6)=18.4349

200

<-7,22>+<3,-10>

What is <-4,12>

<-7+3,22+(-10)>=<-4,12>

200

<-13,12> - <12,-2>

What is <-25,14>

<-13-12,12+2>=<-25,14>

200

<6,6>

What is √72

√(6)2+(6)2=√36+36=√72

200

<9,3>

What is 0.3218 radians or 18.4349 degrees 

tan-1(3/9)

200

<18,5>

What is √349 and 15.5241 degrees

√(18)2+(5)2=√349

tan-1(5/18)=15.5241

300

<3.15,9>+<-4,4.5>

What is <-0.85,13.5>

<3.15+(-4),9+4.5>=<-0.85,13.5>

300

<6.25,3.99> - <6,-3>

What is <0.25,6.99>

<6.25-6,3.99+3>=<0.25,6.99>

300

<3.5,9>

What is √93.25

√(3.5)2+(9)2=√12.25+81=√93.25

300

<3.19,5>

What is 1.0029 radians or 57.4621 degrees

tan-1(5/3.19)

300

<-7,6>

What is √85 and -40.6013 degrees

√(-7)2+(6)2=√85

tan-1(6/-7)=-40.6013

400

(3i+2j)+(4i+5j)

What is (7i+7j)

((3i+4i)+(2j+5j))=(7i+7j)

400

(4i-3j)-(2i+4j)

What is (2i-7j)

((4i-2i)+(-3j-4j))=(2i-7j)

400

<1.25,12.63>

What is √161.0794

√(1.25)2+(12.63)2=√1.5625+159.5169= √161.0794

400

<-6,5>

What is -0.6947 radians or -39.8056 degrees

tan-1(5/-6)

400

<4.82,3>

What is √32.2324 and 31.8984 degrees

√(4.82)2+(3)2=√32.2324

tan-1(3/4.82)=31.8984

500

(5i-2j)+(3j+3.5i)

What is (8.5i+1j)

((5i+3.5i),(-2j+3j))=(8.5i,1j)

500

(3i-3.4j)-(4j+2i)

What is (i-7.4j)

((3i-2i)+(-3.4j-4j))

500

<0.1,0.3>

What is √0.1

√(0.1)2+(0.3)2= √0.01+0.09=√0.1

500

<9.23,-2.2>

What is -0.234 radians -13.4065 degrees

tan-1(-2.2/9.23)

500

<-9.32,6.8>

What is √133.1024 and -36.115 degrees

√(-9.32)2+(6.8)2=√133.1024

tan-1(6.8/-9.32)=-36.115

M
e
n
u