The slope of the function f(x)=x5-3x3-28
5x4-9x2
The limit as x approaches 4 from the right f(x) = (10-x2) x>4 (8-2x) x<4
-6
find the horizontal asymptotes for f(x)=(x3-1)/(x2-1)
no horizontal asymptotes
Integrate f(x)=3x2-4x+1
x3-2x2+x+c
Inflection point =
Turning point
y=-4(-4x2+8x)6 find dy/dx
dy/dx=-24(-4x2+8x)5(-8x+8)
The limit as x approaches 2 (x2+3x-10)/(x-2)
7
find the horizontal asymptote for (5x5-10x+1)/(10x3-20x5+15)
-5/20 or -1/4
Integrate f(x) = 5x10-20x3+1/3x-9x4 from -4 to -4
0
positive or negative
x1/4cosx, find dy/dx
dy/dx=(1/4 x-3/4)(cosx)+(-sinx)(x1/4) or (cosx-4xsinx)/4x3/4
limit as x approaches infinity (72x6-18x3)/(6x6-12x)
12
find the vertical asymptotes of f(x)=(x2-4x-5)/(x2-x-2)
x=2
Let f be a continuous function such that integral (4,6) f(x)dx=-1 and integral (2,6) f(x)dx=9. what is the value of integral (4,2) f(x)dx?
-10
f(x) has a max/min when...
f'(x) crosses x-axis or DNE
y=(2+x3)/(1+4x), find dy/dx in simplified form
dy/dx=(8x3+3x2-8)/(1+4x)2
limit as x approaches 0 (x3-7x)/x3
DNE
find the vertical asymptotes of f(x)=(x2+x-42)/(-2x3+6x2+36x)
x=-3 and x=0
Integrate x/(1+4x2)2
-1/(1+4x2)+c
f"(x) is positive. f(x) is....
concave up
d/dx[f'(x)*g'(x)] such that x=1
f(x)=5x2-8x
g(x)=x3-4x2
54
The limit as x approaches 7 (x2-4x-21)/(3x2-17x-28)
2/5
Find all asymptotes on the function
f(x) = x2+7x+7 / 3x2-8x+4
x=2/3
y=1/3
Integrate f(x)=(3x3-x2+2x-4)/((x2-3x+2)1/2) from 0 to 1
-2.981
f"(x) = 0 or DNE when...
f(x) has an inflection point
f'(x) has a turning point