Derivatives
f(x)=3x2+2x+1
f′(x)=6x+2
∫(3x2+2x+1)dx
x3+x2+x+C
f(x)=sin(x)
f′(x)=cos(x)
∫sin(x)dx
−cos(x)+C
g(x)=5x2−4x+7
g′(x)=10x−4
∫(5x2−4x+7)dx
(5/3)x3−2x2+7x+C
g(x)=3cos(x)
g′(x)=−3sin(x)
∫cos(x)dx
sin(x)+C
h(x)=x3+4x2−2x+5
h′(x)=3x2+8x−2
∫(x3+4x2−2x+5)dx
(1/4)x4+(4/3)x3−x2+5x+C
h(x)=sin(x)cos(x)
h′(x)=(cos(x))2−(sin(x))2
∫xsin(x)dx
−xcos(x)+sin(x)+C
y(x)=e2x
y′(x)=2e2x
∫exdx
ex+C
y(x)=sin(x)/(cosx)
y'(x)=sec2(x)
∫sin2(x)dx
(1/2)x-(1/4)sin(2x)+C
Given f(x)=x2 and g(x)=ex, find the derivative of g(f(x))
ex^2⋅2x
∫1/(x2+1)dx
arctan(x)+C
z(x)=arctan(x)
z′(x)=1/(1+x2)
∫1/(sqrt(1-x2))
arcsin(x)+C