Derivatives
Integrals
Derivatives of Trig Functions
Integrals of Trig Functions
100

f(x)=3x2+2x+1

f′(x)=6x+2

100

∫(3x2+2x+1)dx

x3+x2+x+C

100

f(x)=sin(x)

f′(x)=cos⁡(x)

100

∫sin(x)dx

−cos(x)+C

200

g(x)=5x2−4x+7

g′(x)=10x−4  

200

∫(5x2−4x+7)dx

(5/3)x3−2x2+7x+C

200

g(x)=3cos(x)

g′(x)=−3sin⁡(x)

200

∫cos(x)dx

sin(x)+C

300

h(x)=x3+4x2−2x+5

h′(x)=3x2+8x−2

300

∫(x3+4x2−2x+5)dx

(1/4)x4+(4/3)x3−x2+5x+C

300

h(x)=sin(x)cos(x)

h′(x)=(cos(x))2−(sin(x))2

300

∫xsin(x)dx

−xcos(x)+sin(x)+C

400

y(x)=e2x

y′(x)=2e2x

400

∫exdx

ex+C

400

y(x)=sin(x)/(cosx)

y'(x)=sec2(x)

400

∫sin2(x)dx

(1/2)x-(1/4)sin(2x)+C

500

Given f(x)=x2 and g(x)=ex, find the derivative of g(f(x))

ex^2⋅2x

500

∫1/(x2+1)dx

arctan(x)+C

500

z(x)=arctan⁡(x)

z′(x)=1/(1+x2)

500

∫1/(sqrt(1-x2))

arcsin(x)+C

M
e
n
u