Limits
Differentiation
Anti-differentiation
Theorems
Applications
100


What is     limx-0(sin5x)/x       ?


                     5

100


What is the derivative of log5(2x) ?


           (x* ln5 )-1

100
Integrate F'(x)=3x2+6x.
What is x3+3x2+C?
100

 ∫abf(x)dx=?

F(b)-F(a)

100

Find the area of the region bounded by f(x)=x2-3x-10 and g(x)=-x2+5x+14.


                      170.667

200


What is the limx-π/2+tanx ?


    negative infinite

200

Find the derivative of f(x)=ln(x3+3x2+7).


              (3x2+6x)/(x3+3x2+7)

200


π/65π/6 csc2θ dθ


         2*31/2

200

The Mean Value Theorem can be applied to which of the following functions on the closed interval [−3,3][−3,3]?

a) f(x)=x2/3                     b) f(x)=|x-1|

c) f(x)=(x-2)/(x-5)          d) f(x)=(x-5)/(x-2)





c) f(x)=(x-2)/(x-5)

200

Find the average acceleration of a particle over the interval (0,50) given v(50)=80ft/sec and an initial velocity of 10 ft/sec. Include units in your answer.


                     7/5 ft/sec2  

300

What value of k would make f(x) continues at x=0? 

f(x) = (sinx)/(2x)   when x ≠ 0

f(x) = k                 when x=0


    1/2

300

Find dy/dx for the following function: x2y3+y2+3x=y.


                   (-3-2xy3)/(3x2y2+2y-1)

300

Integrate  

             (ln6x) / x

  

 1/7(lnx)7 + C

300

Find a value c such that the conclusion of the mean value theorem is satisfied for f(x)=2x3+6x-2 on the interval [-2,2].


                    2/31/2    or   -2/31/2

300

The rate of change of radius r of a circle is 4 cm/s. Find the rate of change of Area A when r=2cm.


                           16π

400

What is the limx->inf (log5x)/(x2+7) ?


                    zero

400

If f(x)=cosx and g(x)=sinx, 

what is the derivative of f(g(x)) ? 


                     -sin(sinx)cosx

400

Find the slope of the tangent to the circle

 x2+y2=25

at the point (3,-4) 


                             3/4

400

What theorem guarantees that if f(x) is continuous on [a,b] there is a<c<b for every y: f(a)<y<f(b)? 


The Intermediate Value Theorem 

400

The acceleration of a particle is given by the function a(t)=3t2+7. Find the position function of the particle given that its initial velocity is 10 m/sec and an initial height of 80m.


            s(t)=(t4/4)+3.5t2+10t+80

500

If limx->3f(x) = infinity 

then x=3 is a...


    vertical asymptote

500

Solve for d2y/dx2 when y2=3x2+4x+y at the point (2,5).


           -.036

500

Integrate 1/(9+x2).


                1/3(arctan(x/3)) +C

500

If n is a known positive integer, for what value of k is 

1kxn-1dx = 1/n


         k=21/n

500

Find the volume of the solid generated by revolving the region bounded by y=x2, the x-axis, and x=2 around the y-axis.


                        8π

M
e
n
u