I'm basic
You're only as strong as your weakest link
That's mid
Oops!…
I Did It Again
I understand it now
100

y = 25 

{dy}/{dx} = ?

0

100

f(x) = (x^2 + 1)^3

f'(1) = ?

f'(x) = 6x (x^2 + 1)^2

f'(1) = 24

100

f(x) = {x+6}/{x-2}

f'(1) = ?

f'(x) = {-8}/{(x-2)^2}

f'(1) = -8

100

f(x) = 3x^5 - 4x^3 + 5x

f`'` `'`(x) = ?

60x^3 - 24x

100

f(x) = (x^2 \cdot x^{-2/3})

f'(27) = ?

4
200

y = 3x

{dy}/{dx} = ?

3

200

g(x) = (2x + 3)^4 

g'(-1) = ?

g'(x) = 8(2x+3)^3

g'(-1) = 8

200

f(x) = (x^2 + 2x)(4x - 5)

f'(x) = ?

f'(x) = 12x^2 + 6x - 10

200

y = sin(x)

{d^3y}/{dx^3} = ?

-cos(x)

200

Find the equation of the tangent line to the curve y = \sqrt{x} at  x = 4

Hint: What does y equal when x = 4?

(y - 2) = 1/4 (x - 4)

300

Find the equation of the tangent line to the curve y = x^2 + 3x at  x = 1

Hint: What does y equal when x = 1?

(y - 4) = 5 (x - 1)

300

g(x) = \sqrt{5x^2 + 3}

g'(1) = ?

g'(x) = \frac{5x}{\sqrt{5x^2 + 3}}

g'(1) = 5/3

300

f(x) = {3x^2 + 2}/{x^3 - 1}

f'(-1) = ?

f'(x) = {6x(x^3 - 1) - (3x^2 + 2)(3x^2)}/{(x^3 - 1)^2}

f'(-1) = -3/4

300

h(x) = \sqrt{x}

2 h`'``'`(4)=?

- 1/16

300

The velocity of an automobile starting from rest is

v(t) = {90t}/{4t + 10}

where v is measured in feet per second. 

Find the acceleration at 5 seconds.

a(t) = {900}/{(4t + 10)^2}

a(5) = 1 ft/sec^2

400

f(x) = {5}/{2x^-4}

f'(2) = ?

f'(x) = 10x^3

f'(2) = 80

400

f(x) = \cos^2(4x)

f'(\pi/16) = ?

f'(x) = -8 \cos(4x) \cdot \sin(4x)

f'(\pi/16) = -4

400

f(\theta)= \tan(\theta) \cdot \sin(\theta)

f'(\pi / 4) = ?

f'(\theta) = \sec^2 x \sinx + \sinx = \sinx(\sec^2 x + 1)

f'(\pi/4) = 3/{\sqrt{2}} = {3\sqrt{2}}/2

400

h(x) = \root[3]{x^4}

h`'``'`(8)" = ?

h'(x) = 4/3 x^{1/3}

h''(x) = 4/{9 x^{2/3}} = 4/{9 \root[3]{x^2}}

h''(8) = 1/9

400

f(x) = x \cdot g(h(x))

g(4)=2,  g'(4)=3,  h(3)=4,  h'(3)=-2 

f'(3) = ? 

–16

500

f(x) = {27  \root[3]{x^2}}/{3}

f'(8) = ?

f'(x) = 6/{x^{1/3}} = 6/{\root[3]{x}

f'(8) = 3

500

f(x) = 5  \root[3]{x^3 + 2x - 4}

f'(2) = ?

f'(x) = {15x^2 + 10}/{3 (x^3 + 2x - 4)^{2/3}

f'(2) = 70/12 = 35/6

500

f(x) = {\cos x}/{\sqrt{x}}

f'(\pi) = ?

f'(x) = {-\sqrt{x}\sin x - 1/{2\sqrt{x}} \cos x}/{x}

f'(\pi) = 1/{2\pi \sqrt{\pi}} = 1/{2 \sqrt{\pi^3}}

500

f(x) = (5x - 8)^3

f`'` `'`(2) = ?

f`'` `'`(x) = 150 (5x - 8)

f`'` `'`(2) = 300

500

Find the equation of the tangent line at the point  (\pi/2, 1) 

f(x) = {1 + \cos x}/{1 - \cos x}

f'(x) = {-2 \sin x}/{(1 - \cos x)^2}

f'(\pi/2) = -2

(y - 1) = -2 (x - \pi/2)

M
e
n
u