Rational Functions
More Rational Functions
Model Fitting - must go in order
Transformations
Final Jeopardy - No Calculator
100

Find the domain of  f(x)=\frac{2x+1}{x^2-3x-10} .

(-inf,-2)U(-2,5)U(5,inf) OR

x\ne 5 and x\ne -2

100

Determine which type of asymptote f(x)=\frac{4x^4-3x^3+4x+1}{5x^5-2x^2+1} would have: slant, horizontal, or neither.

Horizontal

100

The data above shows the value of a specific Beanie Baby over time. What type of model would be appropriate for this data?

quadratic

100

g(1)=-27

200

Find the zeroes of  f(x)=\frac{2x+1}{x^2-3x-10}.

x=-1/2

200

F is inversely proportional to the square of 𝑟. If F=80 when r=5, find F when r=8.

F=31.25

200

Write the equation of the regression curve.

f(x)=.298x^2-3.127x+14.246

200

Use the graph of f to find g(x)=f(x-3)+4.

N/A

300

Find the y-intercept of  f(x)=\frac{2x+1}{x^2-3x-10} .

y=-1/10

300

Find the 3rd term when (2x-3)^6 is expanded.

2160x^4

300

Using the model, f(x)=.298x^2-3.127x+14.246 , predict the value of a Beanie Baby in 1999.

f(4)=$6.51

300

Use the graph of f to find g(x)=-f(2x)+5.

N/A

400

Determine the limit of  f(x)=\frac{2x+1}{x^2-3x-10}  as x->-∞ and as x->∞. Use proper notation.

0 and 0

400

Find the coordinates of the hole in  f(x)=\frac{2x^2-10x}{x^2-2x-15} .

(5,1.25)

400

Using our model, f(x)=.298x^2-3.127x+14.246 , find the average rate of change in Beanie Baby value from 2000 to 2010.

$2.83 per year

400

Let f(x)=x^2+3x-5 and g(x)=f(x+2) . Find g(x).

g(x)=x^2+7x+5

500

Determine the limit of f(x)=\frac{2x+1}{x^2-3x-10} as x-> -2^- and as x-> -2^+. Use proper notation.

left side: -∞ and right side: ∞ 

500

Find the equation of the slant asymptote of  f(x)=\frac{4x^3-5x+3}{2x^2+3x} .

y=2x-3

500

f(x)=.298x^2-3.127x+14.246

This will not be on the exam! Find the value of the residual at x=20. Remember: the residual is the difference between the predicted value and actual value. Order of subtraction: Actual-Predicted

Predicted: f(20)=70.906

Actual: 71

Actual-Predicted=71-70.906=.094

500

Let  f(x)=3x+1 . Let 

 g(x)=-f(3x)+4 . Find g(x).

g(x)=-9x+3

500


Give me the x and y coordinates of the hole(s).

Domain: (-∞ ,0)U(0,2)U(2,∞)

Hole: (2,3)

Zero: x=-4

Vertical Asymptote: x=0

M
e
n
u