Log Equivalents
Inverse of Exponents
Graph Behavior
Log Manipulation
Change of base
100

Exponential equivalent for m=log_3 81 ?

 3^m=81 

100

g(x)=5^x What is  g^-1(x) ?

 \log_5 x 

100

End behavior of 2\log x

 \lim_(x->\infty)f(x)=\infty  \lim_{x->0^+} f(x)=-\infty 

100

Condense c\log_b a where a, b, c are positive integers

 \log_b a^c 

100

Change to base 3: \log_2 10 

 \frac{\log_3 10}{\log_3 2} 

200

Exponential equivalent for \log_4 \frac{1}{64} = -3 ?

 4^-3=\frac1{64} 

200

What's the value of  f^-1(32) ?

 5 

200

End behavior of -\log x 

 \lim_(x->\infty)f(x)=-\infty  \lim_{x->0^+} f(x)=\infty 

200

Describe transformation f(x)=\log x->g(x)=\log x^3 

Vertical dilation by a factor of 3

200

Change to base 10: \log_2 10 

 \frac{1} {\log_10 2} 

300

Logarithmic equivalent for 6^3=216 ?

 \log_6 216 = 3

300

The function f is an increasing function such that every time the output values of the function f increase by 1, the corresponding input values multiply by 4. What is the definition of  f(x)?

 \log_4 x 

300

Concavity of e^{2x} 

Up

300

Describe transformation  f(x)=\log x->g(x)=-\log (x-3) 

Horizontal shift, right 3

Vertical reflection

300

Change to base 7: \log_49 10 

 \frac{\log_7 10}{2} 

M
e
n
u