7.1 Completing the Square
7.2 Quadratic Formula/7.3 Discriminant
7.4 Quadratic Form
7.5 Graphing/ 7.6 Quadratic Form
7.7 Writing Quadratic Functions
100

pg 348 #1

Solve 

(3x+1)^2=8

(3x+1)=+-root*(8)

3x=-1+-root()(8)

x=(-1+-root()(8))/3

100

pg 348 #5a

Without solving the equation, determine the nature of its roots. 

5x^2+7x+2=0

Discriminant = 

b^2-4ac

49-4(5)(2)=49-40=9

The discriminant>0 so there are two real roots that are irrational

100

pg 324 #1a

Solve

(x+3)^2-5(x+3)+4=0

z=x+3

z^2=(x+3)^2

z^2-5z+4=0

(z-4)(z-1)=0

z=4, z=1

x+3=4, x+3=1

x=1, x=-2

100

pg348 #8

Graph the parabola. Label the vertex an axis of symmetry

y+3=-1/2(x-2)^2

vertex = (2,-3)

Axis of symmetry is x=2

a<1, so it will be concave down.

100

pg 348 #14

Find the dimensions of a rectangle of greatest area whose perimeter is 20cm

2l+2w = 20

l+w=10

l=10-w

lw=A

w(10-w)=A

10w-w^2=A

max is at (h,k) h =-b/2a

(-10)/(2(-1))=5=h

l=5 and w = 5


200

pg310 #13

Solve by completing the square

x^2-2x-5=0

x^2-2x=5

x^2-2x+1=5+1

(x-1)^2=6

x-1=+-root()(6)

x=1+-root()(6)

200

pg 348 #5b

Without solving the equation, determine the nature of its roots. 

3x^2-4x+2=0

Discriminant = 

b^2-4ac

16-4(3)(2)=16-24=-8

The discriminant<0 so there are two imaginary roots 

200

pg 348 #7a

Solve each equation with quadratic form over complex numbers.

x^4+x^2-12=0

f(x)=z=x^2

(f(x))^2=z^2=x^4

z^2+z-12=0

(z+4)(z-3)=0

z=3,z=-4

x^2=3,x^2=-4

x=+-root()(3),x=+-root()(-4)=+-2i

200

pg 348 #9

Find an equation in the form 

y-k=a(x-h)^2

with vertex (-2,5) and containing point (2,9)

vertex is (-2,5) so h=-2 and k=5

y-5=a(x+2)^2

plug in (2,9) for x and y

9-5=a(2+2)^2

4=a(4)^2

4=16a

a=1/4

y-5=1/4(x+2)^2

200

pg 344 #12

A ball is thrown vertically upward with an initial speed of 80ft/s. Its height after t seconds is given by

h=80t-16t^2

a) How high does the ball go?

b)When does the ball hit the ground?

a)To find the maximum height we can find the vertex (h,k).

h=-b/(2a)=-80/(2*-16)=80/32=5/2

k=80(5/2)-16(5/2)^2

k=200-16(25/4)=200-100=100ft

b)to find when the ball hits the ground we need to find the zeros for the function. 

0=80t-16t^2=t(80-t)

t=0,80

The ball starts at 0ft high at 0 and then hits the ground after being thrown at 80sec

300

pg 310 #17

Solve by completing the square

p^2+20p+200=0

p^2+20p=-200

p^2+20p+100=-200+100

(p+10)^2=-100

p+10=+-root(-100)

p=-10+-10i

300

pg 348 #3 

Use the quadratic formula to solve

4x^2-3x+2=0

x=(3+-root()(9-4(4)(2)))/(2(4))

x=(3+-root()(9-32))/8

x=(3+-root()(-23))/8

300

pg 324 #13

Solve 

((1+x)/2)^2-3((1+x)/2)=18

z=((1+x)/2)

z^2=((1+x)/2)

z^2-3z-18=0

(z-6)(z+3)=0

z=6,z=-3

((1+x)/2)=6,((1+x)/2)=-3

1+x=12,1+x=-6

x=11,x=-7


300

pg.348 #10

Graph the function

f(x)=2x^2-4x+1

After putting it into the form 

y-k=a(x-h)^2

(Hint: Complete the square)

Complete the square

y=2x^2-4x+1

y-1=2(x^2-2x)

y-1+2(1)=2(x^2-2x+1)

y+1=2(x-1)^2

Vertex is (1,-1) and a > 0 so it will be concave up

300

pg 348 #12

Find a quadratic equation with integral coefficients having roots 

(1+-root()(3))/4

sum of roots = -b/a

product of roots  = c/a

(1+root()(3))/4+(1-root()(3))/4=2/4=4/8=c/a

-(1+root()(3))/4*(1-root()(3))/4=-(1-3)/16=2/16=1/8=-b/a

c=4,b=-1,a=8

8x^2-x+4=f(x)

400

pg348 #2

Solve by completing the square

2x^2+6x+3=0

x^2+3x+3/2=0

x^2+3x=-3/2

x^2+3x+9/4=9/4-3/2

(x+3/2)^2=(9-6)/4=3/4

x+3/2=+-root()(3/4)=+-root()(3)/2

x=(-3+-root()(3))/2

400

pg 348 #4

Two positive real numbers have a sum of 7 and a product of 11. Find the numbers.

x+y=7

xy=11

y=7-x

x(7-x)=11

7x-x^2-11=0

-x^2+7x-11=0

x=(-7+-root()(49-4(-1)(-11)))/(2*-1)

x=(-7+-root()(49-44))/(-2)

x=(-7+-root()(5))/(-2)

400

pg 348 #7b

Solve each equation with quadratic form over complex numbers.

x^(-2)-2x^(-1)-1=0

f(x)=z=x^(-1)

(f(x))^2=z^2=x^(-2)

z^2-2z-1=0

z=(2+-root()(4-4(1)(-1)))/2=(2+-root()(8))/2=1+-root()(2)

x^-1=1/x=1+-root()(2)

x=1/(1+-root()(2))

x=-1+-root()(2)

400

pg 336 #34

Find the vertex, the domain, the range, and zeros of the function

f(x)=2(x-5)^2-8

can be rewritten as 

y+8=2(x-5)^2

Vertex is then (5,-8)

The Domain is all real numbers

the function is concave up because a>0 so -8 is the minimum and the range is >=-8

The zeros are

0+8=2(x-5)^2

4=(x-5)^2

+-2=x-5

5+-2=x=7,3

400

pg 348 #13

Find a quadratic function 

f(x)=ax^2+bx+c

having a minimum value -9 and zeros 1/2 and -5/2

sum of roots = -b/a

product of roots = c/a

(1/2)+(-5/2)=-4/2=-2=c/a

(1/2)(-5/2)=(-5/4)=-b/a

a(x^2+(5x)/4-2)=y

minimum at (-1,-9)

a((-1)^2+(-5)/4-2)=-9

a((4-5-8)/4)=-9

a((-9/4))=-9

a=4

4(x^2+(5x)/4-2)=y

4x^2+5x-8=y

500

pg 310 #33

Solve by completing the square

2x(x-4)=3(1-x)

2x^2-8x=3-3x

2x^2-5x=3

x^2-(5x)/2=3/2

x^2-(5x)/2+(25/16)=3/2+25/16

(x-5/4)^2=24/16+25/16=49/16

x-5/4=+-root()(49/16)=+-7/4

x=(5+-7)/4

x=3,-1/2

500

pg. 348 #6

Find all real values of k for which 

2x^2+kx+3=0

Has a double root

Discriminant must =0 to have a double root

D=0=b^2-4ac

0=k^2-4(2)(3)=k^2-24

k=+-root()(24)=+-2root()(6)



500

pg324 #15

Solve

2/y+1/root()(y)=1

z=1/root()(y)

z^2=1/y

2z^2+z-1=0

(2z-1)(z+1)=0

z=-1,z=1/2

1/root()(y)=-1,1/root()(y)=1/2

root()(y)=-1, root()(y)=2

y=4


500

pg348 #11

Find the domain, range, and zeros of 

g(x)=x^2-6x+4

domain is all real numbers

vertex is 

-b/(2a)=6/2=3=h

(3)^2-6(3)+4=9-18+4=-5=k

Minimum is -5

Range is >=5

zeros

0=x^2-6x+4

x=(6+-root()(36-4(1)(4)))/2

x=(6+-root()(20))/2

x=3+-root()(5)

500

pg 347 #15

Find a quadratic function for the parabola having minimum value -2 and x-intercepts 1 and -3.

minimum value is -2 and h is halfway between 1 and -3. So h = -1 and vertex is (-1,-2)

with that you can input into the vertex form 

y+2=a(x+1)^2

To find a simply plug in (1,0) or (-3,0) into the equation.

0+2=a(1+1)^2

2=4a

a=1/2

y+2=1/2(x+1)^2

From there we can multiply it out to get the basic form 

ax^2+bx+c=y

y+2=1/2(x^2+2x+1)

y=1/2x^2+x+1/2-4/2

y=1/2x^2+x-3/2

M
e
n
u