Basic Derivatives
Trig Derivatives
Logarithmic functions
Implicit Differentiation!
L'Hopital's Rule
100

f(x)=(x2+1)(x3-5)-ln(5)

f'(x)=5x4+3x2-10x

100
List derivatives of sin(x),cos(x),tan(x)

cos(x),-sin(x),sec2(x)

100

h(x)=ln(3x+1)

h'(x)=(1/3x+1)(3)

100

x3+y3=25, find dy/dx.

 dy/dx = -x2/y2

100

State three indeterminate forms

∞/∞, 0(∞), ∞-∞, 00, 1infinity, ∞0, 0/0 

200

f(a)=e6-log(a)

f'(a)=0-1/[ln(10)a]

200

f(x)=sin2x+cos2x

f'(x)=0 via pythagorean identity

1 point if brute forced and get f'(x)=2sin(x)cos(x)+2cos(x)sin(-x)

200

V(x)=(x2+1)x

V'(x)=(x2+1)x[x(1/x2+1)(2x))+ln(x2+1)]

200

Give three notations for the first derivative

f'(x), Dx, dy/dx

200

limx->0 (ex-1)/x

1

300

f(x)=1000000000x1000000000, find f1000000000(x)

1000000000(1000000000!), where (!) is the factorial.

350 points if the factorial is not used (Dr.Duhon's discretion)

300

f(k)=sin(cos(sin(tan(k))))

f'(k)=cos(cos(sin(tan(k))))(-sin(sin(tan(k))))(cos(tan(k)))(sec2(k))

300

g(x)=(xex)/(x2-1). Use logarithmic differentiation to find g'(x).

g'(x)=(xex)/(x2-1)[(1/x)+1-(2x/(x2-1))]

300

Differentiate yln(x)=(6xy)/(12y) with respect to x

(dy/dx)lnx + (1/x)y = 1/2

300

limx->0+ xlnx

0

400

Let f(x),g(x),h(x) be functions. Define w(x)=f(2g(x))+eg(x)h(x). Find w'(x).

w'(x)=f'(2g(x))(2g'(x))+(eg(x)h(x))(g'(x)h(x)+g(x)h'(x))

400

Let f(x)= cos(4x)sin(2x). find the slope of the tangent line at x=π/6.

f'(x)=cos(4x)(2)cos(2x)-sin(4x)(4)sin(2x),

plug in and  f'(π/6)=-7/2

400

h(x)=ln((x3+1)x/ex^3)

h'(x)=x(1/(x3+1))(3x2)+ln(x3+1)-3x2

400

Find dy/dx, 2x3+4y4=6xy

dy/dx = (6y-6x)/(16y-6x)

400

limx->0 (1-cosx)/x2

DNE

500

f(x)=sin(ln(x2+ln(x3)))

f'(x)=cos(ln(x2+ln(x3)))[1/(x2+ln(x3)][2x+3x2/x3]

500

sin-1(tan(2+ecos(x)))

Will be written on the board

500

If a sum of $4000 is deposited into an account that pays r% interest, compounded monthly, the balance after 8 years is given by
A=4000(1+r/1200)96

Find dA/dr when r=6.

dA/dr at r=6 is 320(201/200)95​​​​
500

Find dz/dt(sin(z)+u3+(z/u) = 3zu)

2sin(z)cos(z)(dz/dt)+3u2(du/dt)+[u(dz/dt)-z(du/dt)]/u2 = 3z(du/dt) + 3u(dz/dt)

500

limx->∞ (1+(1/x))x

e

M
e
n
u