Parametric
Polar
Integration
Differential Equations
100

The velocity of a biker is defined as  v(t) = (48y)/(3t+1) . Find the equation for acceleration.

a(t) = 48/(3t+1)^2

100

Convert the point  (-1, pi)  from polar coordinates to rectangular coordinates

(1,0)

100

Solve  int ln x dx 

xlnx - x + C

100

Let  y=f(x)  be the solution to the differential equation  dy/dt = .45y  with  y(0) = 30 

y = 30e^(.45t)

200

An object moving along the curve in the xy plane is at position  <x(t), y(t)>  at time  t , where  dx/dt = sin^-1(4-3e^-t) . The curve has a vertical tangent line at one point on the interval  -1<t<0 . At what time is the object at this point?

ln 3/4

200

Convert the point  (2, pi/3)  from polar coordinates to rectangular coordinates

(1, sqrt(3))

200

Solve  int x^2 e^-x dx 

-x^2e^-x - 2xe^-x -2e^-x + C

200

Let  y=f(x)  be the solution to the differential equation  y'=2x+y^2  with the initial condition  f(1) = 3 . What is the approximate value of  f(2)  by using Euler's method with two steps of equal length starting at  x=1 .

19

300

What is the velocity vector at time  t=3  of the following set of parametric equations?

x=t^4-4t, y=2t^2+11t

<104, 23>

300

What is the slope of the line tangent to the polar equation  r = cos theta  when  theta = pi/2 ?

0

300

Solve  int x^2 cosx dx 

x^2sinx + 2xcosx + 2sinx + C

300

Give the solution to  dy/dt = 0.7y(1-y/4)  with  y(0)=3 

y=4/(1+1/3(e^-0.7t))

400

If  x=2t^2  and  y = ln t , what is  (d^2y)/dx^2 ?

-1/8t^4

400

Find the area inside the curve  r=4costheta  and outside the curve  r=4sintheta  in the first quadrant.

8

400

Solve  int e^x sinx dx 

(-e^xcosx + e^xsinx)/2 + C

400

Find the function  y = f(x)  which satisfies the differential equation  dy/dx = 3x^2y  with the initial condition that  y(0) = 6 .

6e^(x^3)

500

Find the arclength of  y=-x^2+9  from  0 <= x <= 3 

9.747

500

Find the area of the inner loop of the graph 

r=9+15sin(theta)


 = 20.526

500

Solve  int (5x+7)/((x-1)(x+3)) 

3/(x-1) + 2/(x+3) + C

500

Find the function  y=f(x)  which satisfies the differential equation  xy' + 2y' - 2 = 0   with the condition that  f(5) = 0 .

y=2(ln|x+2|-ln|7|) or y=2(ln|(x-2)/7|

M
e
n
u