Inverse/Logarithms
Implicit Differentiation
Inverse Trig
Rate of Change
100

Find the derivative of the function y=ln(sinx)

y'=cotx

100

How do you solve an implicit differentiation problem? 

- Differentiate both sides with respect to x 

- Collect dy/dx to one side and solve 

100

Find the derivative of the function y= tan-1(x2+5x)

y'=2x+5/1+(x2+5x)2

100

What is position? 

s(t)

200

Find the derivative of the function y= 3*sqr (lnx)

y'=1/3x*ln(x)2/3

200

If x2+y2=10000, find the derivative 

dy/dx= -x/y

200

What is arccsc x? 

-1/|x|sqr(x2-1)

200

How do you find velocity? What is speed? 

s'(t)=v(t) 

|v(t)|

300

Find the derivative of the function y=ln(3te-t)

y'=-t+1/t

300

If x5=3x-y/x+4y, then find the derivative. 

Hint: You can rewrite from fraction form to make it easier to work through (rather than quotient rule)

dy/dx=6x5+20x4y-3/(-1-4x5)

300

Find the derivative of the function h(x)=sin-1x/1+x? 

h'(x)=(1+x/sqr(1-x2))-sin-1(x)/(1+x)2

300

How do you find acceleration? 

s''(t)=v'(t)=a(t)

400

Use logarithmic differentiation to find the derivative of y=(3x+2)4(x7)/sinx

dy/dx=((3x+2)4(x7)/sinx)(12/(3x+2)+7/x-cotx)

400

If e6x=sin(x+7y), then find the derivative. 

dy/dx= 6e6x-cos(x+7y)/7(cos(x+7y))

400

Find the derivative of the function y=xarcsinx+sqr(1-x2)

y'=arcsinx

400

A rock thrown vertically upward from the surface of the moon at a velocity of 32 m/sec reaches a height of s=32t-0.8t2 meters in t sec. 

a.) Find the rock's velocity and acceleration at time t. 

b.) How long does it take the rock to reach its highest point? 

c.) How high does the rock go? 

a.) v(t)= 32-1.6t; a(t)=-1.6

b.) t=20 sec. 

c.) s(20)= 320 meters

500

Find the derivative of the function y=log2(3x-x4)

Hint: d/dx logau=1/u*lna

y'=3-4x3/(3x-x4)ln(2)

500

Use implicit differentiation to find an equation of the tangent line to the curve at the given point. 

4xy+pi*siny=23pi         (4,3pi/2)

y=3pi/8*x+3pi

500

Find the derivative of the function y=ln(arccot(9x2))

y'=18x/arccot(9x2)(1+81x4)

500

At time t, the position of a body moving along the s-axis is s=-t3+12t2-45t m. 

a.) Find the body's acceleration each time the velocity is zero. 

b.) Find the body's speed each time the acceleration is zero.

c.) Find the total distance traveled by the body from t=0 to t=4.   

a.) a(3)=6 m/sec2; a(5)= -6 m/sec2

b.) |v(4)|= 3 m/sec

c.) 56m

M
e
n
u