Power Rule
Product/Quotient Rule
Trigonometric Functions
Chain Rule
Random Calculus
100

Derive: x2

2x

100

Let g be a function such that g(4)=8, and g'(4)=-3

Let h be the function h(x)=x1/2

Let H be a function defined as H(x)=g(x)⋅h(x)

What is H′(4)=?

-4

100

Derive: sin(x)

cos(x)

100

Derive: sin(x2)

2xcos(x2)

100

For y=x, what is the limit as x approaches 1.

1

200

Derive: x3

3x2

200

Table:

x    g(x)    h(x)     g'(x)        h'(x)

0     -3       -1        5             3

F(x)=g(x)⋅h(x)

What is F'(0)=?

-14

200

Derive: cos(x)

-sin(x)

200

Derive: (x2)1/2

2x/(x2)1/2

200

Approximate the area between the x-axis and f(x) from x=10 to x=16 using trapezoidal sum with 3 equal subdivisions: 

   x  10  12   14  16 

f(x)  5    1     7    7

28

300

Derive: x10

10x9

300

Derive: cos(x)/sin(x)

-1/sin(x)2

300

Derive: sec(x)

(sec(x))(tan(x))

300

Table:

x        f(x)       g(x)          f'(x)         g'(x)

1         4            2             3              -2

2          6            1            1                0

G(x)=f(g(x)), what is G'(2)?

G'(2)=0

300

A particle moves in a straight line with a velocity v(t) meters per second, where t is the time in seconds. At t=3, the particle's distance from the starting point was 12 meters in the positive direction. What was the particle's position at t=9 seconds?: 

How would you write an expression to represent this?

12 + 93| v(t) dt  

400

Derive: 3x12

36x11

400

Table:

x       g(x)        h(x)        g'(x)       h'(x)

-2       4             1            -1           2

H(x)=g(x)/h(x)

What is H'(-2)=?

H'(-2)=-9

400

Derive: arcsin(x)

1/(1-x2)1/2

400

f(x)= -5 x 7x

Find f '(x)

-5 x 7ln(7)

400

Let f be a twice differentiable function, and let f(-7)=6, f'(-7)=0, and f''(-7)=-5

What occurs in the graph of f at the point (-7,6)?


(-7,6) is a maximum point

500

Derive: 9x6

54x5

500

Derive: y=xln(x)

x+2xln(x)

500

Derive: cot(x)

-csc2(x) or -1/sin(x)2

500

y= tan(x2 - 4x)

Find dy/dx (Derivative) 

2x - 4 / cos2(x2 - 4x) 

500

f(x)=2x3-9x2+12x

Where does f have critical points?

x= 1 and 2

M
e
n
u