Limits
Derivatives
Integrals
Theorems/Formulas
Random
100

lim x→3 (x + 21)

24

100

y=2x^2+2x+31

4x+2

100

∫ 9 dx

9x + C

100

1 + tan^2(θ)

sec^2(θ)

100

ln(e) = ?

1

200

lim x→5 (8x^2 + 7)/ (3x-4)

207/11

200

(3x-1)(4x+3)

24x+5

200

∫3x^6−2x^2+3x−9dx

(3x^7/7)-(2x^3/3)+(3x^2/2)-9x+C

200

What is the chain rule?

f' (g(x)) g'(x)

200

What is the derivative of tan(x)

sec^2(x)

300

lim x→4 (5x^4 - 6x^2 - 420)/(x-4)

2555

300

(x^4+2x^3)/x^2

2x+2

300

∫ 16x^3+6x^2−22x+4dx

4x^4+2x^3-11x^2+4x+C

300

d/dx (lnx) = ?

1/x

300

What is the 2nd derivative of any line segment?

0

400

lim x→5+ (x+21)/ sqrt(x)

26(sqrt5)/5

400

y=(7x^3-4x^2+7)^(1/4)

(21x^2-8x)/4(7x^3-4x^2+7)^(3/4)

400

∫ 8+csc(θ)[sin(θ)+sin(θ)]dθ

10θ + C

400
What is the Mean Value Theorem?

If f is continues and different on (a, b) then 

f(b)-f(a)/b-a = f'(c)

400

What is the Quotient Rule?

(g(x) * f'(x) - f(x)) / g^2(x)

500

lim x→2+ |2x-1|/(3x^2-x)

3/10

500

y= e^x(x^2-6)

2xe^x+e^xx^2-2e^x

500

∫ 7e^x+14−2/7xdx

7e^x+14x-2/7*ln(|x|)+C

500

What is the Rolle's Theorem?

If function f is continuous on [a, b] and differentiable on (a, b) then derivative of f = 0

500

Find the derivative 

y = cos(3x)^-1/2

y' = -sin(3x)/cos(3x)^1/2

M
e
n
u