Trigonometry
Evaluate
Simplify
Graphing
Functions
100

The EXACT values of the six trigonometric functions of the angle: 2π / 3

100
log base 2 of 1/8
-3
100

-8x^-2

-8/x^2

100

Graph y=x^2 - 3x +2 (label x and y intercepts)

100

State the domain of this function: (x^2 +2)/(2x^2 - 5x - 3)

R, x cannot equal -1/2, 3

200
Solve on [0, 2pi): sec x + 2 = 0
2pi/3, 4pi/3
200
ln e^7
7
200

(36x^10)^1/2

6x^5

200
State the vertical asymptotes of this function: x / (x^2-3x+2)
x=2, x=1
200

Find the inverse of the following function:

y=x^3

 y = (x)^1/3

f^-1 = x^1/3

300

Arcsec (2 rad(3)/3)

pi/6

300
sin pi
0
300

(27x^3)^-2/3

 1 / 9x^2

300
State the horizontal asymptote of this function: (3x^2)/(x^3 - 4x +3)
y=0
300

If f(x) = x^2 - x + 1 and g(x) = 2x - 1, 

find f(g(-1))

f(g(-1)) = 13

400

Given theta is on the interval [0, 2π), find the EXACT value(s) of theta in radians, that makes the statement true: tan (theta) = rad(3)/3

pi/6 and 7pi/6

400

If f(x)= x^2 -5x +8, evaluate f(-6)

74

400

Factor completely: x^3 - x^2 +3x - 3

(x-1) (x^2 +3)

400

Consider the graph of the function f(x) = 4x - x^2. On which intervals is f(x) increasing and decreasing?

Increasing on (-infinity, 2)

Decreasing on (2, infinity)

400

 

f(-10) = 150
500

Solve for the EXACT values of x when x lies on [0,2pi]:

 2cos^2 x+3cosx−2=0

pi/3, 5pi/3

500

If f(x)= x^2 -5x +8, evaluate f(x+h)

x^2 +2xh+h^2 - 5x - 5h +8

500

Factor completely: x^3 + 5x^2 - 4x - 20

(x+5)(x+2)(x-2)

500

See Image #2

C

500

A function is defined by the equation y = -3x - 4. If the domain is 1 <= x <= 5, what is the minimum value in the range of the function?

-19

M
e
n
u