Derivatives
12x^3
36x^2
∫7x^6-5x^3+4dx
x^7-5/4x^4+4x+C
sin π/3
√3/2
x^3 [1,3]
10
What does this equation represent
C'(x)=R'(x)
Maximum profit
1+7𝑥−3𝑥^2
-6x+7
∫e^x + 6√𝑥dx
e^x+4x^3/2+C
cos 7π/4
√2/2
4-3x^2 [-1,1]
3
1/4x^3-3x
3/4x^2-3
∫(3x + 2)^2dx
3x^3+6x^2+4x+C
tan 7π/6
√3/3
1/x [e,2e]
ln2/e
what is the equation for revenue
xp
quantity x price
3x^2/3-2x^2+7
2x^-1/3-2
∫7cscxcotxdx
-7cscx+C
cot π
undefined
6-x^2 [-2,2]
-2
what is the equation for profit
R(x)-C(x)
revenue-cost
13x^4+29x^3-12x^2+4x-52
52x^3+87x^2-24x+4
∫3/5x^2/3-9x+1dx
9/25x^5/3-9/2x^2+x+C
sec 5π/3
2
x-2√x [0,4]
-2/3
the revenue function for a product is R(x)=x(4-.0001x). Find the largest revenue.
40,000