Determine whether the sequence is convergent or divergent. If convergent what does is converge to?
a_n=(2+n^3)/(1+2n^3)
Converges to
1/2
What are the requirements for integral comparison test
f(x) must be positive continuous and decreasing
Sigma_(n=1)^oo(3n^2+2)/(sqrt(4n^4+4))
Diverges by Divergence Test
Determine R and IOC
Sigma_(n=0)^oo(x^n)/(n!)
R=oo, I=(-oo,oo)
Use known Macluarin series to write as a Maclaurin Series
f(x)=sin(pix)

Determine convergence:
Sigma_(n=1)^oo 2^(2n+1)/5^n
converges to
8
Sigma_(n=1)^oo((n^2+1)/(2n^2+1))^n
Sigma_(n=1)^oo((-2)^n)/(n^2)
Diverges by Ratio or Root Test
Determine ROC and IOC
Sigma_(n=1)^oox^n/(2n-1)
R=1, IOC=(-1,1]
Use known Maclaurin Series to obtain a maclaurin series and it ROC
f(x)=e^x+e^(2x)

Determine convergence
2+0.5+0.125+0.03125+...
Converges to
8/3
Sigma_(n=1)^oo (n^2+1)/(n^3+1)
Diverges by Limit Comparison Test
Sigma_(n=1)^oo(n!)/(100^n)
Diverges by ratio test
Find a power Series rep. and find IOC
f(x)=2/(3-x)
2/3 Sigma_(n=0)^oo(x/3)^n
R=3, I=(-3,3)
Find the Taylor Series and Radius
f(x)=e^(2x), a=3

R=oo
Determine convergence
Sigma_(n=1)^oo 1/(n(n+3))
Converges to
11/18
Sigma_(n=1)^oo(cos^2(n))/(n^2+1)
Converges by Comparison Test
Sigma_(n=1)^oo((-1)^(n-1))/(n^(1/3))
Converges Conditionally
Find power series representation and determine the IOC:
f(x)=x/(9+x^2)

I=(-3,3)
Find taylor series centered at a
f(x)=cosx, a=pi

R=oo
Determine Convergence
Sigma_(n=1)^oo (1+2^n)/3^n
Convergence to
5/2
Sigma_(n=1)^oo1/(nln(n))
Diverges by integral Test
Sigma_(n=2)^oo((-1)^nsqrtn)/(ln(n))
Fails AST b/c lim diverges to infinity. Diverges by divergence test.
Find power series representation and determine the IOC:
f(x)=x/(2x^2+1)

I=(-1/sqrt2,1/sqrt2)
f(x)=ln(x), a=2
R=2