Monomials
Polynomials
Adding and Subtracting Polynomials
Transforming Formulas
Cumulative Ch. 1-4
100
How do you find the degree of a monomial?
Add the degrees of its variables
100
How do you find the degree of a polynomial?
Find the largest degree of its variables.
100
n^2 - 4n - 3n^2 + 7n + 5n^2
3n^2 + 3n
100
A = A + Prt Solve for "t".
t = (A-P) / Pr where P and r cannot equal 0
100
-7 - (-20) / 2
3
200
(5x^5y)(3x^3y^4)
15x^5y^5
200
4x(2x - 3)
8x^2 - 12x
200
(3x^2y + 4xy^2 - 2y^3 + 3) + ( x^2y + 3y^3 - 4)
4x^2y + 4 xy^2 + y^3 - 1
200
m = (x + y) / 2 Solve for "y"
y = 2m - x
200
-3 l6 - 12l
-18
300
(3a^5)(5a^3) - (6a^2)(a^6)
9a^8
300
6r^2(2r - 1) - 3r(4r^2 - 5r)
9r^2
300
(3a^2 - 2ab - 2b^2 - 7) - (a^2 - 5ab + 4ab^2 - 2)
4a^2 + 3ab - 6b^2 - 5
300
s = (n/2)(a + l) Solve for "l".
l = 2s/n - a where n cannot equal 0.
300
ly - 1l + 4 = 0
no solution
400
(2x^n)^3(x^n)^5
8x^ (8n)
400
(5 + x)(x^2 - 5x + 4)
x^3 - 21x + 20
400
Solve. (11n - 5) - (3n - 2) = -19
n = -2
400
l = a + (n - 1)d Solve for "n"
n = (l - a + d)/ d where d cannot equal 0
400
(11x - 3) - (4 + 2x) = 11
x = 2
500
[(2x)^3(xy)^2] + [(2xy)^2(-x)^3]
4x^5y^2
500
(3x + 5)(2x - 3) = (x - 1)(6x + 5)
5
500
Find four consecutive odd integers such that the sum of the two greatest is four times the smallest.
5,7,9,11
500
S = (a - rl)/ (l-r) Solve for "l".
l = (S - Sr - a) / -r
500
(2x - 3)(3x + 1) = (3x - 4)(2x + 2)
x = 1
M
e
n
u