\int\ k\ dx=
kx+C
\int_0^2\ 6x\ dx=
12
\int\ 3x^2\ dx
x^3+C
The equation following equation represents what math term?
\intf(x)\ dx
Indefinite Integral
\int\ k\ f(x)\ dx=
k\ \int \ f(x)\ dx
\int_-1^0\ 2x-1\ dx
-2
\int\ 2sin(x)\ dx
-2cos(x)+C
This term is an approximation that takes the following form:
lim_(n\to\oo)\Sigma_(k=1)^n\ f(x_k)\ \Deltax
Riemann Sum
\int\ cos(x)\ dx=
sin(x)+C
\int_-1^1\ t^2 - 2\ dt
-10/3=-3.\bar3=-3\ 1/3
\int\ 1/(x^3) \ dx
-1/(2x^2) +C
This theorem states "If 'f' is continuous on the closed interval [a,b], there exists a number 'c' in the closed interval [a,b] such that
\int_a^bf(x)\ dx=f(c)(b-a)
The Mean Value Theorem (for Integrals)
\int\ sec(x)tan(x)\ dx=
sec(x)+C
\int_0^n\ 1+sin(x) \ dx
n-cos(n)+1
\int\ 4x^3 - 10x - 3\ dx
x^4 - 5x^2 - 3x + C
The value of f(c) given in the Mean Value Theorem for Integrals is called this:
The Average Value of a Function (on that integral)
\int\ csc(x)cot(x)\ dx=
-csc(x)+C
\int_0^4\ |x^2-9| \ dx
64/3
\int 2/\sqrt x\ dx=
4x^(1/2) + C=4\sqrt x +C