Translations
Reflections
Rotations
Symmetry
Congruence Transformations /
Compositions
100

Write the rule for the given transformation: 


(x,y) → (x+4, y-2)

<4, -2>

100

Write a rule to describe each transformation: 

(In words and in coordinate notation).


Reflection across  y=x 

(x,y)→(y, x)

100

Write a rule to describe the rotation. Be specific. 

(In words and in coordinate notation).

Rotation of  180 °  

(x,y)→(-x, -y)

100

Determine how many lines of symmetry the figure has: 

5 lines

100

A double reflection of parallel lines is the same as a ________________. 

Translation

200

Find the coordinates of the image after the given translation.

W(2,1) →  ?

(x,y)→ (x+3, y-6)

W'(5, -5)

200

Write a rule to describe each transformation: 

(In words ONLY).




Reflect across  x=-2 

200

Write a rule to describe the rotation. Be specific. 

(In words and in coordinate notation).


Rotation of   90° C C W  or 

270° C W

(x,y)→(-y, x)

200

Determine how many lines of symmetry there are. 

4 lines of symmetry

200

A double reflection over intersecting lines is the same as a _________________. 

Rotation

300

Find the coordinates of the vertices of the triangle after the given translation. 

W(-1,-5), V(3, -2), U(4, -4)

(x,y)→(x-3, y+3)

W'(-4,-2), V'(0, 1), U'(1, -1)

300

Find the coordinates of the point after the given reflection:

S(-5,-1)

Reflection over the y-axis

S'(5, -1)

300

Rotate the point  P(3,-2) around the origin  90° C C W . Give the coordinates of  P'. 

P'(2,3)

300

The figure has rotational symmetry. Find the order. 

Order: 2

300

Describe a congruence transformation that maps △ABC  to  △A'B'C' .

(Hint: Be careful with the scale!)

Translate 8 units right, 2 units up

(x,y)→(x+8, y+2)

<8, 2>

400

Find the coordinates of the point after translating it along vector  <-5, 8> .

D(1, -5)

D'(-4,3)

400

Find the coordinates of the line segment after the given reflection.

Reflect over the x-axis:

C(3,0), D(1, -3)

C'(3,0), D'(1,3)

400

Rotate the point  V(-2,-5) around the origin  90° C W . Give the coordinates of  V'. 

V'(-5,2)

400

The given figure has rotational symmetry. Find the magnitude. 

Magnitude/Angle of Rotation: 45 degrees

400

Describe a congruence transformation that maps △ABC  to  △A'B'C' .

(Hint: 2 actions)

Reflection in the x-axis, followed by a translation 2 units right

500

1st Translation: (x, y) → (x + 2, y − 1), 

2nd Translation: (x, y) → (x + 1, y − 2); 

Overall Movement: (x, y) → (x + 3, y − 3)

500

After reflecting the figure across the line  y=-x , in which quadrant will its image be located?

Quadrant I

500

Point  P(4,-1)  is rotated  180°  about the point  C(1,3) 
Find the coordinates of the image  P' 

P'(-2,7)

500

Determine if the figure has linear / rotational symmetry. If so, find how many lines of symmetry, what the order is and what the magnitude is. 

4 lines of symmetry

Order: 4

Magnitude: 90 degrees

500

Which figures are congruent? Name a transformation that maps the pre-image onto each image. 

 

△NPM≅△UVT; Rotate 90 degrees CCW

△FEG≅△RQS; Rotate 180 degrees OR Reflect over y=-x

ABCD≅HJKL; Translate <7,-4>

M
e
n
u