Chain Rule
Implicit Differentiation
Inverse Functions/Trig
Exp and Log Functions
Wild Card
100

(x+ 1)5

20x(x4 + 1)4

100

3x3=4y2 + 2

(9x2)/(8y)

100

y=cos-1(-5x4)

(20x3) / (1 - 25x8)1/2

100

y=ln (4x5)

5/x

100

y= 2x- 4x - 2 at (2, -2)

Find the equation of the normal line.

y= -(1/4) x - 3/2

200

y = cos (5x4)

-20x3 sin (5x4)

200

-5xy+ 5 = x

(-1 -5y2) / (10xy)

200

y=tan-1(4x5)

(20x4) / (16x10 + 1)

200

y=25x^4

5x3 * 25x^4 + 2 ln 2

200

y= -2  cos (2x) at (pi/4, 0)

Find the equation of the tangent line.

y = 4x - pi

300

(3x+ 5)4 (5x3 + 1)

3x2 (3x+ 5)3 (95x4 + 16x + 25)

300

(5y2 + 1)=4x3

(3x2) / (25y+ 5y)

300

y=csc-1 (5x3)

-(15x2) / (|5x3| (25x6 - 1)1/2

300

y=log3(4x3)

3/ (x ln 3)

300

y= -x3 + x2

Find the points where the tangent line is horizontal.

(0,0), (2/3, 4/27)

400

y = sin3 (5x4)

60x3 sin2 (5x4) cos (5x4)

400

(3y3 + 2)=2x

1 / (27y+ 18y2)

400

f(x) = x + 4, a=3

(f-1)' (a) = 1

400

y=5xx^3

y(3x2 ln x + x2)

400

x= 3y+ 2

Find (d2y)/(dx2).

(d2 y)/(dx2) = (3y2 -x2) / (9y3)

500

y=cos (sin (2x5))

=-10x4  sin (sin (2x5)) cos (2x5)

500

3x + 5 = sec (2y2)

3 / (4y sec (2y2) tan (2y2))

500

f(x) = 5x - 3, a = -2

(f-1)' (a) = 1/5

500

y= ((4x+ 3)4) / ((x +1)3 * (5x- 2)5)

[((4x+ 3)4) / ((x +1)3 * (5x- 2)5) ] * [(48x2)/(4x3 + 3) - (3) / (x + 1) - (50x) / (5x2 - 2)]

500

5x2 -4y2 =3

Find (d2y)/(dx2).

(d2y) / (dx2) = (20y2 - 25x2) / (16y3)

M
e
n
u