5.1 Inverse Functions
5.2 Exponential Functions and graphs
5.3 Logarithmic Functions and graphs
5.4 Properties of Logarithms
5.5 Exponential and Logarithmic Equations
100

Find the inverse of the relation.

{(0, 5), (-7, 7), (-5, 9), (5, -5)}

{(5,0), (7,-7), (9,-5), (-5,5)

100

Use a calculator to find the value to the nearest ten-thousandth:

e^-2.45

approx 0.0863

100

Graph the equation on paper:

y=log(base 7) x

The logarithmic equation y=log(base 7) x is equivalent to the exponential equation x=7^y.

Plug in 0, -1, -2, 1, 2 for y-values into x=7^y

(1,0), (1/7,-1), (1/49,-2), (7,1), (49,2)

Plot the points and connect the dots with a smooth curve

100

Express as the sum or difference of logarithms:

log(base 5)21x

log(base 5)21+log(base 5)x

100

Solve:

3^3x=9

x=2/3

200

Graph the inverse of x=y^2+6. Reflect the graph across the line y=x to obtain the graph of its inverse relation.


Plug y-values -2, -1, 0, 1, and 2 into x=y^2+6 to get x-values 

           X                 Y 

          10               -2

           7                -1

           6                 0

           7                 1

          10                2

Then flip the ordered pairs around to graph the inverse function across the y=x line.

(-2,10), (-1,7), (0,6), (1,7), (2,10)

200

Use the transformation to graph f(x)=-3^x-4; parent function is f(x)=3^x

Plug in -2, -1, 0, 1, 2 for x-values into f(x)=3^x

      x                        y=3^x

     -2                         1/9

     -1                         1/3

      0                           1

      1                           3

      2                           9

Plot the points

To get -3^x the graph should be reflected over the x-axis

Final part of the function is the shift the graph of the function -3^x, 4 units down

200

Find the logarithm:

log(base 10)1,000,000

Let the expression equal 'w'

Now you have a logarithmic equation. To convert the equation, use the definition of logarithms:

(y = log(base a) x) is equivalent to a^y=x

In this case, a=10 and y=w

10^w=1,000,000

To find 'w', write 1,000,000 as a power of 10: 10^6

10^w=10^6

Base cancels out so w=6

200

Express as a product:

ln (7 squareroots of 4)

1/7ln4

200

Solve for x. 

log(base 2)x = 4

x=16

300

Determine whether the following function is one-to-one using the definition of a one-to-one function:

f(x)=1/5x-8

A function f is one-to-one if different inputs have different outputs that is, if a≠b, then f(a)≠f(b). Or, if when the outputs are the same, the inputs are the same that is, if f(a)=f(b), then a = b. Use either of these conditions to determine whether f is one-to-one or not.

Plug f(a) into the equation: f(a)=1/5a-8

Plug f(b) into the equation: f(b)=1/5b-8,

Now set the 2 expressions equal to each other: 1/5a-8 = 1/5b-8

Simplify by adding 8 to both sides: 1/5a = 1/5b

Rationalize the expression by multiplying both sides by the denominator 5 to get rid of it: a = b

So, for the given function, if f(a) = f(b), then a = b is true.

Therefore, the given function is a one-to-one function.

 

300

Graph f(x)=e^x+2

Plug in 0, 1, 2, -1 for x-values

     x                    f(x)=e^x+2

     0                         3.0

     1                         4.7

     2                         9.4

    -1                         2.4

Then plot the ordered pairs

300

Find the logarithm:

log(base3) 1/81

-4

300

Express as a difference of logarithms:

log(base b)Z/17

log(base b)Z - log(base b)17

300

Solve the exponential equation:

3^2x+1 = 4^x

x = approx. -1.355

400

Graph the function and its inverse using a graphing calculator:

f(x)=0.4x+2.5

To find the inverse of the function replace f(x) with y: y=0.4x+2.5

Now interchange x and y: x=0.4y+2.5

Solve for y by subtracting 2.5 from both sides: 0.4y=x - 2.5

Now divide by sides by 0.4 to isolate y: y=2.5x - 6.25

Finally replace y with f^-1(x): f^-1(x)=2.5x-6.25


400

Graph the function: f(x)=3/4e^x

Plug in -2, -1, 0, 1, 2 for x-values

    x                     f(x)=3/4e^x

   -2                    approx. 0.102

   -1                    approx. 0.276

    0                    approx. 0.75

    1                   approx. 2.039  

    2                   approx. 5.542

Plot the points and draw the graph

400

Find the following without using a calculator:

ln(15squareroot) of e

1/15

400

Express log(base b)p^5q^8/m^6b^4 in terms of sums and differences of logarithms.

5log(base b)p + 8log(base b)q - 6log(base b)m - 4

400

Solve the following logarithmic equation:

log(base 125)1/5 = x

-1/3

500

For the following function, a) determine whether it is one-to-one; b) if it is one-to-one, find its inverse function:

f(x)=x−7

a) The function is one-to-one because it passes the horizontal line test

b) f^-1(x)=x+7

500

Graph the following piecewise function:

         {e^-x-5, for x<-2}

f(x)= {x+2, for -2<(or equal to)x<1}

         {x^2, for x>(or equal to)1}


Plug in -2.25, -2.50, -2.75 for x-values into f(x)=e^-x-5

(-2.25,4.488), (-2.50,7.182), (-2.75,10.643)

Graph this piece of the function for x<-2

Plug in -2, -1, 0, 1 for x-values into f(x)=x+2

(-2,0), (-1,1), (0,2), (1,3)

Graph this piece of the function for -2<(or equal to)x<1

Plug in 1, 3, 4 for x-values into f(x)=x^2

(1,4), (3,9), (4,16)

Graph this piece of the function for x>(or equal to)1

500

Find the logarithm using natural logarithms and the change-of-base formula:

log(base700)37

approx. 0.5512

500

Given that log(base b)(5)≈1.609, log(base b)(11)≈2.398, and log(base b)(16)≈2.773, find the logarithm of log(base b)1/55

-4.007

500

Solve the following equation:

8^x-4 = 64(3^x)

x= approx. 12.721

M
e
n
u